Fungal Genomics

at Utrecht University

General Properties

Protein IDOphauG2|3402
Gene name
LocationContig_258:372..3109
Strand-
Gene length (bp)2737
Transcript length (bp)2577
Coding sequence length (bp)2577
Protein length (aa) 859

Overview

Your browser does not support drawing a protein figure.

PFAM Domains

PFAM Domain ID Short name Long name E-value Start End
PF00493 MCM MCM P-loop domain 1.5E-97 480 702
PF17207 MCM_OB MCM OB domain 4.0E-38 313 439
PF12619 MCM2_N Mini-chromosome maintenance protein 2 9.7E-29 67 200
PF17855 MCM_lid MCM AAA-lid domain 2.7E-24 730 813
PF14551 MCM_N MCM N-terminal domain 4.4E-12 215 305
PF01078 Mg_chelatase Magnesium chelatase, subunit ChlI 2.5E-06 590 683
PF07728 AAA_5 AAA domain (dynein-related subfamily) 6.2E-06 537 655

Swissprot hits

[Show all]
Swissprot ID Swissprot Description Start End E-value
sp|P40377|MCM2_SCHPO DNA replication licensing factor mcm2 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm2 PE=1 SV=1 69 835 0.0E+00
sp|P29469|MCM2_YEAST DNA replication licensing factor MCM2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM2 PE=1 SV=2 45 836 0.0E+00
sp|P55861|MCM2_XENLA DNA replication licensing factor mcm2 OS=Xenopus laevis GN=mcm2 PE=1 SV=2 89 837 0.0E+00
sp|Q6DIH3|MCM2_XENTR DNA replication licensing factor mcm2 OS=Xenopus tropicalis GN=mcm2 PE=2 SV=1 89 837 0.0E+00
sp|P49736|MCM2_HUMAN DNA replication licensing factor MCM2 OS=Homo sapiens GN=MCM2 PE=1 SV=4 92 833 0.0E+00
[Show all]
[Show less]
Swissprot ID Swissprot Description Start End E-value
sp|P40377|MCM2_SCHPO DNA replication licensing factor mcm2 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm2 PE=1 SV=1 69 835 0.0E+00
sp|P29469|MCM2_YEAST DNA replication licensing factor MCM2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM2 PE=1 SV=2 45 836 0.0E+00
sp|P55861|MCM2_XENLA DNA replication licensing factor mcm2 OS=Xenopus laevis GN=mcm2 PE=1 SV=2 89 837 0.0E+00
sp|Q6DIH3|MCM2_XENTR DNA replication licensing factor mcm2 OS=Xenopus tropicalis GN=mcm2 PE=2 SV=1 89 837 0.0E+00
sp|P49736|MCM2_HUMAN DNA replication licensing factor MCM2 OS=Homo sapiens GN=MCM2 PE=1 SV=4 92 833 0.0E+00
sp|P97310|MCM2_MOUSE DNA replication licensing factor MCM2 OS=Mus musculus GN=Mcm2 PE=1 SV=3 89 833 0.0E+00
sp|Q2R482|MCM2_ORYSJ DNA replication licensing factor MCM2 OS=Oryza sativa subsp. japonica GN=MCM2 PE=2 SV=1 199 833 0.0E+00
sp|P49735|MCM2_DROME DNA replication licensing factor Mcm2 OS=Drosophila melanogaster GN=Mcm2 PE=1 SV=1 89 833 0.0E+00
sp|B8BKI8|MCM2_ORYSI DNA replication licensing factor MCM2 OS=Oryza sativa subsp. indica GN=OsI_36121 PE=3 SV=1 199 833 0.0E+00
sp|Q9LPD9|MCM2_ARATH DNA replication licensing factor MCM2 OS=Arabidopsis thaliana GN=MCM2 PE=1 SV=1 89 833 0.0E+00
sp|Q9UXG1|MCM_SULSO Minichromosome maintenance protein MCM OS=Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) GN=MCM PE=1 SV=1 218 809 2.0E-122
sp|Q0WVF5|MCM4_ARATH DNA replication licensing factor MCM4 OS=Arabidopsis thaliana GN=MCM4 PE=1 SV=1 204 807 2.0E-102
sp|Q561P5|MCM5_XENTR DNA replication licensing factor mcm5 OS=Xenopus tropicalis GN=mcm5 PE=2 SV=1 209 807 3.0E-101
sp|Q9VGW6|MCM5_DROME DNA replication licensing factor Mcm5 OS=Drosophila melanogaster GN=Mcm5 PE=1 SV=1 212 807 4.0E-101
sp|P55862|MCM5A_XENLA DNA replication licensing factor mcm5-A OS=Xenopus laevis GN=mcm5-a PE=1 SV=2 209 807 2.0E-100
sp|O80786|MCM5_ARATH DNA replication licensing factor MCM5 OS=Arabidopsis thaliana GN=MCM5 PE=1 SV=1 245 809 1.0E-99
sp|Q6PCI7|MCM5B_XENLA DNA replication licensing factor mcm5-B OS=Xenopus laevis GN=mcm5-b PE=2 SV=1 209 807 4.0E-99
sp|B8AEH3|MCM5_ORYSI DNA replication licensing factor MCM5 OS=Oryza sativa subsp. indica GN=MCM5 PE=3 SV=1 216 807 4.0E-99
sp|Q6KAJ4|MCM5_ORYSJ DNA replication licensing factor MCM5 OS=Oryza sativa subsp. japonica GN=MCM5 PE=2 SV=1 216 807 5.0E-99
sp|Q5JKB0|MCM4_ORYSJ DNA replication licensing factor MCM4 OS=Oryza sativa subsp. japonica GN=MCM4 PE=3 SV=2 234 807 5.0E-97
sp|P30665|MCM4_YEAST DNA replication licensing factor MCM4 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM4 PE=1 SV=2 212 807 7.0E-97
sp|Q3ZBH9|MCM7_BOVIN DNA replication licensing factor MCM7 OS=Bos taurus GN=MCM7 PE=2 SV=1 312 818 4.0E-96
sp|P33993|MCM7_HUMAN DNA replication licensing factor MCM7 OS=Homo sapiens GN=MCM7 PE=1 SV=4 312 818 7.0E-96
sp|P41389|MCM5_SCHPO DNA replication licensing factor mcm5 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm5 PE=1 SV=2 215 817 1.0E-95
sp|Q0V8B7|MCM5_BOVIN DNA replication licensing factor MCM5 OS=Bos taurus GN=MCM5 PE=2 SV=1 214 807 1.0E-95
sp|Q54CP4|MCM5_DICDI DNA replication licensing factor mcm5 OS=Dictyostelium discoideum GN=mcm5 PE=3 SV=1 213 807 2.0E-95
sp|P33992|MCM5_HUMAN DNA replication licensing factor MCM5 OS=Homo sapiens GN=MCM5 PE=1 SV=5 214 807 2.0E-94
sp|Q61881|MCM7_MOUSE DNA replication licensing factor MCM7 OS=Mus musculus GN=Mcm7 PE=1 SV=1 312 818 6.0E-94
sp|P43299|MCM7_ARATH DNA replication licensing factor MCM7 OS=Arabidopsis thaliana GN=MCM7 PE=1 SV=2 293 807 2.0E-93
sp|O75001|MCM7_SCHPO DNA replication licensing factor mcm7 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm7 PE=1 SV=1 311 807 3.0E-93
sp|Q9FL33|MCM3_ARATH DNA replication licensing factor MCM3 OS=Arabidopsis thaliana GN=MCM3 PE=1 SV=1 215 809 4.0E-93
sp|Q2QNM1|MCM7_ORYSJ DNA replication licensing factor MCM7 OS=Oryza sativa subsp. japonica GN=MCM7 PE=2 SV=1 299 807 1.0E-92
sp|Q6NX31|MCM7_XENTR DNA replication licensing factor mcm7 OS=Xenopus tropicalis GN=mcm7 PE=2 SV=1 313 818 1.0E-92
sp|B8BMI1|MCM7_ORYSI DNA replication licensing factor MCM7 OS=Oryza sativa subsp. indica GN=MCM7 PE=3 SV=1 299 807 1.0E-92
sp|P29496|MCM5_YEAST Minichromosome maintenance protein 5 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM5 PE=1 SV=1 214 807 1.0E-92
sp|P49718|MCM5_MOUSE DNA replication licensing factor MCM5 OS=Mus musculus GN=Mcm5 PE=1 SV=1 214 807 2.0E-92
sp|P34647|MCM6_CAEEL DNA replication licensing factor mcm-6 OS=Caenorhabditis elegans GN=mcm-6 PE=1 SV=1 214 815 3.0E-92
sp|Q26454|MCM4_DROME DNA replication licensing factor MCM4 OS=Drosophila melanogaster GN=dpa PE=1 SV=2 197 806 5.0E-92
sp|Q7ZXB1|MCM7B_XENLA DNA replication licensing factor mcm7-B OS=Xenopus laevis GN=mcm7-b PE=2 SV=1 313 810 5.0E-92
sp|Q91876|MCM7A_XENLA DNA replication licensing factor mcm7-A OS=Xenopus laevis GN=mcm7-a PE=1 SV=2 312 818 8.0E-92
sp|Q61J08|MCM6_CAEBR DNA replication licensing factor mcm-6 OS=Caenorhabditis briggsae GN=mcm-6 PE=3 SV=1 214 815 2.0E-91
sp|Q21902|MCM5_CAEEL DNA replication licensing factor mcm-5 OS=Caenorhabditis elegans GN=mcm-5 PE=3 SV=1 212 807 3.0E-91
sp|P30664|MCM4B_XENLA DNA replication licensing factor mcm4-B OS=Xenopus laevis GN=mcm4-b PE=1 SV=3 187 806 5.0E-91
sp|P29458|MCM4_SCHPO DNA replication licensing factor mcm4 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm4 PE=1 SV=2 271 803 6.0E-91
sp|P30666|MCM3_SCHPO DNA replication licensing factor mcm3 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm3 PE=1 SV=2 201 802 8.0E-91
sp|Q7ZY18|MC6ZB_XENLA Zygotic DNA replication licensing factor mcm6-B OS=Xenopus laevis GN=zmcm6-b PE=1 SV=1 210 815 3.0E-90
sp|P33991|MCM4_HUMAN DNA replication licensing factor MCM4 OS=Homo sapiens GN=MCM4 PE=1 SV=5 165 806 4.0E-90
sp|Q6GL41|MCM4_XENTR DNA replication licensing factor mcm4 OS=Xenopus tropicalis GN=mcm4 PE=2 SV=1 187 806 6.0E-90
sp|P38132|MCM7_YEAST DNA replication licensing factor MCM7 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM7 PE=1 SV=4 312 807 2.0E-89
sp|Q0DHC4|MCM3_ORYSJ DNA replication licensing factor MCM3 OS=Oryza sativa subsp. japonica GN=MCM3 PE=2 SV=1 215 809 2.0E-89
sp|B8AZ99|MCM3_ORYSI DNA replication licensing factor MCM3 OS=Oryza sativa subsp. indica GN=MCM3 PE=3 SV=1 215 809 2.0E-89
sp|Q5XK83|MCM4A_XENLA DNA replication licensing factor mcm4-A OS=Xenopus laevis GN=mcm4-a PE=1 SV=1 215 806 2.0E-89
sp|Q43704|MCM31_MAIZE DNA replication licensing factor MCM3 homolog 1 OS=Zea mays GN=ROA1 PE=2 SV=2 312 809 2.0E-89
sp|Q28CM3|MCM6M_XENTR Maternal DNA replication licensing factor mcm6 OS=Xenopus tropicalis GN=mmcm6 PE=2 SV=1 297 815 4.0E-89
sp|Q6P1V8|MCM6Z_XENTR Zygotic DNA replication licensing factor mcm6 OS=Xenopus tropicalis GN=zmcm6 PE=2 SV=1 206 815 5.0E-89
sp|Q498J7|MC6ZA_XENLA Zygotic DNA replication licensing factor mcm6-A OS=Xenopus laevis GN=zmcm6-a PE=1 SV=1 210 815 6.0E-89
sp|Q9SX04|MCM32_MAIZE DNA replication licensing factor MCM3 homolog 2 OS=Zea mays GN=ROA2 PE=2 SV=1 312 809 7.0E-89
sp|Q9SX03|MCM33_MAIZE DNA replication licensing factor MCM3 homolog 3 OS=Zea mays GN=ROA3 PE=2 SV=1 312 809 7.0E-89
sp|P49717|MCM4_MOUSE DNA replication licensing factor MCM4 OS=Mus musculus GN=Mcm4 PE=1 SV=1 185 806 4.0E-88
sp|P97311|MCM6_MOUSE DNA replication licensing factor MCM6 OS=Mus musculus GN=Mcm6 PE=1 SV=1 299 815 4.0E-88
sp|Q2KIZ8|MCM6_BOVIN DNA replication licensing factor MCM6 OS=Bos taurus GN=MCM6 PE=2 SV=1 299 815 8.0E-88
sp|Q7Q0Q1|MCM6_ANOGA DNA replication licensing factor Mcm6 OS=Anopheles gambiae GN=Mcm6 PE=3 SV=3 299 806 1.0E-87
sp|Q14566|MCM6_HUMAN DNA replication licensing factor MCM6 OS=Homo sapiens GN=MCM6 PE=1 SV=1 299 815 2.0E-87
sp|Q5FWY4|MCM6M_XENLA Maternal DNA replication licensing factor mcm6 OS=Xenopus laevis GN=mmcm6 PE=1 SV=1 297 815 2.0E-87
sp|P49739|MCM3M_XENLA Maternal DNA replication licensing factor mcm3 OS=Xenopus laevis GN=mmcm3 PE=1 SV=2 310 810 1.0E-86
sp|Q9V461|MCM6_DROME DNA replication licensing factor Mcm6 OS=Drosophila melanogaster GN=Mcm6 PE=1 SV=1 295 796 2.0E-86
sp|Q9XYU1|MCM3_DROME DNA replication licensing factor Mcm3 OS=Drosophila melanogaster GN=Mcm3 PE=1 SV=1 212 807 2.0E-86
sp|P53091|MCM6_YEAST DNA replication licensing factor MCM6 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM6 PE=1 SV=2 294 806 2.0E-86
sp|P49731|MCM6_SCHPO DNA replication licensing factor mcm6 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm6 PE=1 SV=2 213 815 2.0E-86
sp|Q29JI9|MCM6_DROPS DNA replication licensing factor Mcm6 OS=Drosophila pseudoobscura pseudoobscura GN=Mcm6 PE=3 SV=1 295 796 8.0E-86
sp|Q9XYU0|MCM7_DROME DNA replication licensing factor Mcm7 OS=Drosophila melanogaster GN=Mcm7 PE=1 SV=1 311 807 2.0E-85
sp|F4KAB8|MCM6_ARATH DNA replication licensing factor MCM6 OS=Arabidopsis thaliana GN=MCM6 PE=1 SV=1 297 816 4.0E-85
sp|Q28BS0|MCM3Z_XENTR Zygotic DNA replication licensing factor mcm3 OS=Xenopus tropicalis GN=zmcm3 PE=2 SV=1 212 807 4.0E-84
sp|Q7ZXZ0|MCM3Z_XENLA Zygotic DNA replication licensing factor mcm3 OS=Xenopus laevis GN=zmcm3 PE=1 SV=1 212 807 3.0E-82
sp|Q0V9Q6|MCM8_XENTR DNA helicase MCM8 OS=Xenopus tropicalis GN=mcm8 PE=2 SV=1 300 817 4.0E-82
sp|Q6F353|MCM6_ORYSJ DNA replication licensing factor MCM6 OS=Oryza sativa subsp. japonica GN=Os05g0235800 PE=3 SV=1 297 815 9.0E-82
sp|P25206|MCM3_MOUSE DNA replication licensing factor MCM3 OS=Mus musculus GN=Mcm3 PE=1 SV=2 212 809 1.0E-81
sp|P25205|MCM3_HUMAN DNA replication licensing factor MCM3 OS=Homo sapiens GN=MCM3 PE=1 SV=3 212 809 2.0E-81
sp|I0IUP3|MCM8_CHICK DNA helicase MCM8 OS=Gallus gallus GN=MCM8 PE=1 SV=1 300 817 2.0E-81
sp|Q5R8G6|MCM3_PONAB DNA replication licensing factor MCM3 OS=Pongo abelii GN=MCM3 PE=2 SV=1 212 809 3.0E-81
sp|Q9CWV1|MCM8_MOUSE DNA helicase MCM8 OS=Mus musculus GN=Mcm8 PE=1 SV=3 300 817 4.0E-81
sp|B8AZX3|MCM6_ORYSI DNA replication licensing factor MCM6 OS=Oryza sativa subsp. indica GN=MCM6 PE=3 SV=1 297 815 7.0E-81
sp|Q5F310|MCM8_XENLA DNA helicase MCM8 OS=Xenopus laevis GN=mcm8 PE=2 SV=2 300 817 2.0E-80
sp|D3ZVK1|MCM8_RAT DNA helicase MCM8 OS=Rattus norvegicus GN=Mcm8 PE=3 SV=1 300 817 2.0E-80
sp|B8AZ14|MCM8_ORYSI Probable DNA helicase MCM8 OS=Oryza sativa subsp. indica GN=MCM8 PE=3 SV=1 248 814 5.0E-80
sp|B9FKM7|MCM8_ORYSJ Probable DNA helicase MCM8 OS=Oryza sativa subsp. japonica GN=MCM8 PE=2 SV=1 248 814 1.0E-79
sp|Q5ZMN2|MCM3_CHICK DNA replication licensing factor MCM3 OS=Gallus gallus GN=MCM3 PE=2 SV=1 310 810 3.0E-79
sp|A4FUD9|MCM3_BOVIN DNA replication licensing factor MCM3 OS=Bos taurus GN=MCM3 PE=2 SV=1 212 807 4.0E-79
sp|Q24849|MCM3_ENTHI DNA replication licensing factor MCM3 OS=Entamoeba histolytica GN=MCM3 PE=3 SV=1 310 809 8.0E-79
sp|P24279|MCM3_YEAST DNA replication licensing factor MCM3 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM3 PE=1 SV=1 314 814 1.0E-78
sp|B8B406|MCM9_ORYSI Probable DNA helicase MCM9 OS=Oryza sativa subsp. indica GN=MCM9 PE=3 SV=1 217 817 1.0E-78
sp|Q9SF37|MCM8_ARATH Probable DNA helicase MCM8 OS=Arabidopsis thaliana GN=MCM8 PE=2 SV=2 299 814 2.0E-78
sp|Q69QA6|MCM9_ORYSJ Probable DNA helicase MCM9 OS=Oryza sativa subsp. japonica GN=MCM9 PE=2 SV=1 249 817 3.0E-78
sp|Q9UJA3|MCM8_HUMAN DNA helicase MCM8 OS=Homo sapiens GN=MCM8 PE=1 SV=2 300 817 9.0E-76
sp|F4IFF3|MCM9_ARATH Probable DNA helicase MCM9 OS=Arabidopsis thaliana GN=MCM9 PE=3 SV=1 249 817 6.0E-75
sp|Q9NXL9|MCM9_HUMAN DNA helicase MCM9 OS=Homo sapiens GN=MCM9 PE=1 SV=4 249 845 9.0E-75
sp|I0IUP4|MCM9_CHICK DNA helicase MCM9 OS=Gallus gallus GN=MCM9 PE=1 SV=2 265 837 1.0E-74
sp|F1N2W9|MCM9_BOVIN DNA helicase MCM9 OS=Bos taurus GN=MCM9 PE=3 SV=2 265 835 3.0E-74
sp|F6RIX4|MCM9_XENTR DNA helicase MCM9 OS=Xenopus tropicalis GN=mcm9 PE=3 SV=1 248 830 3.0E-73
sp|E1BPX4|MCM8_BOVIN DNA helicase MCM8 OS=Bos taurus GN=MCM8 PE=3 SV=2 300 817 5.0E-73
sp|Q6NRM6|MCM9_XENLA DNA helicase MCM9 OS=Xenopus laevis GN=mcm9 PE=1 SV=1 248 830 1.0E-72
sp|Q62724|MCM6_RAT DNA replication licensing factor MCM6 (Fragment) OS=Rattus norvegicus GN=Mcm6 PE=1 SV=2 474 815 2.0E-71
sp|Q2KHI9|MCM9_MOUSE DNA helicase MCM9 OS=Mus musculus GN=Mcm9 PE=1 SV=2 265 845 2.0E-71
sp|F1M5F3|MCM9_RAT DNA helicase MCM9 OS=Rattus norvegicus GN=Mcm9 PE=3 SV=2 249 830 2.0E-71
sp|F1QDI9|MCM9_DANRE DNA helicase MCM9 OS=Danio rerio GN=mcm9 PE=3 SV=2 295 792 7.0E-70
sp|Q86B14|MCM6_DICDI DNA replication licensing factor mcm6 OS=Dictyostelium discoideum GN=mcm6 PE=3 SV=1 475 815 4.0E-68
sp|Q58884|Y1489_METJA Uncharacterized MCM-type protein MJ1489 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ1489 PE=3 SV=1 311 814 2.0E-53
sp|Q58371|Y961_METJA Uncharacterized MCM-type protein MJ0961 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ0961 PE=3 SV=1 448 811 3.0E-41
sp|Q57809|Y363_METJA Uncharacterized MCM-type protein MJ0363 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ0363 PE=3 SV=1 293 807 2.0E-34
sp|Q9VF30|MCMR_DROME DNA replication licensing factor REC OS=Drosophila melanogaster GN=rec PE=1 SV=2 307 814 2.0E-24
sp|Q60275|Y3513_METJA Uncharacterized MCM-type protein MJECL13 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJECL13 PE=3 SV=1 320 811 2.0E-21
sp|Q86B14|MCM6_DICDI DNA replication licensing factor mcm6 OS=Dictyostelium discoideum GN=mcm6 PE=3 SV=1 232 435 2.0E-14
[Show less]

GO

GO Term Description Terminal node
GO:0032508 DNA duplex unwinding Yes
GO:1905775 negative regulation of DNA helicase activity Yes
GO:0016887 ATP hydrolysis activity Yes
GO:0005524 ATP binding Yes
GO:0005634 nucleus Yes
GO:0006270 DNA replication initiation Yes
GO:0003677 DNA binding Yes
GO:0042555 MCM complex Yes
GO:1901363 heterocyclic compound binding No
GO:0043462 regulation of ATP-dependent activity No
GO:0051097 negative regulation of helicase activity No
GO:0048519 negative regulation of biological process No
GO:0003676 nucleic acid binding No
GO:0010639 negative regulation of organelle organization No
GO:0017111 nucleoside-triphosphatase activity No
GO:0065007 biological regulation No
GO:0043231 intracellular membrane-bounded organelle No
GO:0032991 protein-containing complex No
GO:0043227 membrane-bounded organelle No
GO:0071840 cellular component organization or biogenesis No
GO:0033044 regulation of chromosome organization No
GO:0016787 hydrolase activity No
GO:0005575 cellular_component No
GO:0046483 heterocycle metabolic process No
GO:0032392 DNA geometric change No
GO:0043168 anion binding No
GO:0043226 organelle No
GO:0050789 regulation of biological process No
GO:0008150 biological_process No
GO:1905462 regulation of DNA duplex unwinding No
GO:0051276 chromosome organization No
GO:0008152 metabolic process No
GO:1905774 regulation of DNA helicase activity No
GO:0043229 intracellular organelle No
GO:0006725 cellular aromatic compound metabolic process No
GO:0043170 macromolecule metabolic process No
GO:0036094 small molecule binding No
GO:0016817 hydrolase activity, acting on acid anhydrides No
GO:0033043 regulation of organelle organization No
GO:0090304 nucleic acid metabolic process No
GO:0110165 cellular anatomical entity No
GO:0051095 regulation of helicase activity No
GO:0043086 negative regulation of catalytic activity No
GO:0006139 nucleobase-containing compound metabolic process No
GO:0006996 organelle organization No
GO:0044260 cellular macromolecule metabolic process No
GO:0097367 carbohydrate derivative binding No
GO:0044237 cellular metabolic process No
GO:0044092 negative regulation of molecular function No
GO:0032555 purine ribonucleotide binding No
GO:1901360 organic cyclic compound metabolic process No
GO:0050794 regulation of cellular process No
GO:0000166 nucleotide binding No
GO:0050790 regulation of catalytic activity No
GO:0097159 organic cyclic compound binding No
GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides No
GO:0030554 adenyl nucleotide binding No
GO:0009987 cellular process No
GO:0005488 binding No
GO:0048523 negative regulation of cellular process No
GO:0051129 negative regulation of cellular component organization No
GO:0032559 adenyl ribonucleotide binding No
GO:0003824 catalytic activity No
GO:0032780 negative regulation of ATP-dependent activity No
GO:0065009 regulation of molecular function No
GO:0043167 ion binding No
GO:0044238 primary metabolic process No
GO:1905463 negative regulation of DNA duplex unwinding No
GO:0032553 ribonucleotide binding No
GO:1901265 nucleoside phosphate binding No
GO:0006259 DNA metabolic process No
GO:0071103 DNA conformation change No
GO:0017076 purine nucleotide binding No
GO:0034641 cellular nitrogen compound metabolic process No
GO:0016043 cellular component organization No
GO:0035639 purine ribonucleoside triphosphate binding No
GO:0051128 regulation of cellular component organization No
GO:0016462 pyrophosphatase activity No
GO:0006807 nitrogen compound metabolic process No
GO:0071704 organic substance metabolic process No
GO:2001251 negative regulation of chromosome organization No
GO:0003674 molecular_function No

Deeploc

Deeploc data not available for this genome

SignalP

(None)

Transmembrane Domains

(None)

Transcription Factor Class

(None)

CAZymes

(None)

Secondary Metabolism

(None)

Expression data

No expression data available for this genome

Orthologs

Orthofinder run ID4
Orthogroup3043
Change Orthofinder run
Species Protein ID
Ophiocordyceps australis 1348a (Ghana) OphauG2|3402 (this protein)
Ophiocordyceps australis map64 (Brazil) OphauB2|3846
Ophiocordyceps camponoti-floridani Ophcf2|02518
Ophiocordyceps camponoti-rufipedis Ophun1|784
Ophiocordyceps kimflemingae Ophio5|6515
Ophiocordyceps subramaniannii Hirsu2|527

Sequences

Type of sequenceSequence
Locus Download genbank file of locus Download genbank file of locus (reverse complement)
The gene with 5 kb flanks (if sufficient flanking sequence is available). For use in cloning design programs. NOTE: features (genes or exons) that are only partially contained within the sequence are completely excluded.
Protein >OphauG2|3402
MSSPLRDNPSSANRGATRRDKRKRLGNGAEDEESSVGPDSSQMPSSPPGRFKVAHGADDDDDDDDMEDEAEIQDD
IDDIDEMADDDVDLFREGFEADYRGGEGDGYQGDDLDDEGQYEAMDLGARRRLEDKLNKRDGEVARRQRLPAAFL
PGEEDEGSVDLTAQPRRRRHYDENGEDDMEVDIMDEVLSLEALGDVKAGNLTEWVATAAVQRTIKREFKSFLTSY
TDASGSSVYGNRIRRLGEVNGESLAVSYEHLSESKAILAYFVANAPSAMLKLFDEVAMEAVLLHYANYERIHSEI
HVRIYEVPVHYTLRQLRQSHLNCLVRVSGVVTRRTGVFPQLKYVKFDCGKCGVTLGPFQQEANAEVKVSYCQNCQ
SRGPFQVNSEKTVYRNYQKLTLQEAPGTVAAGRLPRHREVILLWDLIDTAKPGEEIEVTGIYRNSYDAQLNNRNG
FPVFATVLEANHVVKAHDQLAGFRLTDEDEQAIRRLSKDGRIVERIIESMAPSIYGHGDVKTAVALSLFGGVAKV
ARGGHRVRGDINVLLLGDPGTAKSQVLKYVEKTAHRAVFATGQGASAVGLTASVRRDALTSEWTLEGGALVLADR
GTCLIDEFDKMNDQDRTSIHEAMEQQTISISKAGIVTTLQARCGIVAAANPLGGRYNSTIPFSANVQLTEPILSR
FDILVVVRDTVDPAEDERLARFIVGSHGRSHPQQPGATDHSSAAQSNSAAQIPQELLRKYILYARERCSPKIYDI
DGAKVSRLYADMRRESLATGAYPITVRHLEAIFRISEAFCRMRLSDYCSPQDIDRAIAVTVDSFVGSQKLSCKRA
LARAFAKYTLARPGATKQQQQQQQGPRPTAAMA*
Coding >OphauG2|3402
ATGAGTTCCCCTCTGCGAGACAATCCGTCGTCGGCAAATCGAGGCGCGACACGGCGAGACAAGCGCAAGCGTTTG
GGTAACGGGGCTGAGGATGAGGAGTCATCTGTGGGGCCCGACTCGAGCCAAATGCCGTCGTCGCCGCCAGGACGG
TTCAAGGTGGCTCACGGGGCGGACGACGACGACGACGACGACGATATGGAGGACGAGGCGGAGATCCAAGACGAC
ATTGACGATATTGACGAAATGGCGGATGACGATGTGGATCTGTTCCGGGAGGGCTTCGAGGCGGATTACCGCGGG
GGCGAGGGCGACGGGTATCAAGGAGACGACCTGGACGACGAGGGCCAGTACGAGGCGATGGATCTAGGGGCGCGG
CGACGTCTGGAAGACAAGCTCAACAAGCGAGACGGCGAGGTGGCGCGGCGACAGAGGCTGCCAGCAGCGTTTCTC
CCCGGGGAGGAAGACGAGGGCTCGGTGGATCTGACAGCGCAGCCGCGGCGGCGGCGGCACTACGACGAGAATGGC
GAGGACGACATGGAGGTGGACATTATGGACGAGGTGCTGTCGCTGGAGGCGCTGGGGGACGTCAAGGCGGGCAAC
CTGACGGAGTGGGTGGCAACGGCGGCGGTGCAGCGGACGATTAAGCGCGAGTTCAAGTCGTTTCTGACATCGTAC
ACGGACGCGTCGGGGTCGTCGGTGTACGGCAACCGGATCCGGCGGCTGGGGGAGGTGAATGGCGAGTCGCTGGCG
GTGTCGTACGAGCATCTGTCGGAGAGCAAGGCGATCCTGGCGTACTTTGTGGCGAATGCGCCGAGCGCGATGCTC
AAGCTGTTTGACGAGGTGGCGATGGAGGCAGTGCTGCTGCACTACGCCAACTACGAGCGCATCCACTCGGAGATC
CACGTACGCATCTACGAGGTGCCGGTGCACTACACGCTGCGGCAGCTGCGGCAGTCGCACCTCAACTGCCTGGTG
CGGGTGAGCGGCGTGGTGACGCGGCGGACGGGCGTCTTCCCACAGCTCAAGTACGTCAAGTTTGACTGCGGCAAG
TGTGGAGTGACGCTGGGCCCGTTCCAGCAGGAGGCGAATGCCGAGGTCAAGGTGTCGTACTGCCAGAACTGCCAG
TCGCGCGGCCCGTTCCAGGTCAACTCGGAGAAGACGGTGTACCGCAACTACCAGAAGCTGACGCTGCAGGAGGCG
CCGGGGACGGTGGCGGCGGGGCGGCTGCCGCGGCATCGCGAGGTGATTCTGCTGTGGGACCTGATTGACACGGCC
AAGCCGGGGGAGGAGATTGAGGTGACGGGCATCTACCGCAACAGCTACGACGCGCAGCTCAACAACCGCAACGGG
TTCCCGGTGTTTGCGACGGTGCTCGAGGCCAACCACGTGGTCAAGGCGCACGACCAGCTGGCGGGCTTCCGGCTG
ACGGACGAGGACGAGCAGGCGATCCGGCGGCTGTCCAAGGACGGGCGGATTGTGGAGCGCATCATTGAGAGCATG
GCGCCCAGCATCTACGGGCACGGCGACGTCAAGACGGCGGTGGCGCTGTCGCTGTTTGGGGGGGTGGCCAAGGTG
GCGCGGGGGGGGCACCGGGTGCGCGGCGACATCAACGTGCTGCTGCTGGGCGACCCGGGCACGGCCAAGTCGCAG
GTGCTCAAGTACGTGGAGAAGACGGCGCACCGGGCCGTGTTTGCGACGGGGCAGGGCGCCAGCGCGGTGGGCCTG
ACGGCCAGCGTGCGGCGCGACGCGCTGACGAGCGAGTGGACGCTCGAGGGCGGCGCGCTGGTGCTGGCCGACCGC
GGCACGTGTCTGATTGACGAGTTTGACAAGATGAACGACCAGGACCGCACGTCGATCCACGAGGCCATGGAGCAG
CAGACCATATCCATTTCCAAGGCGGGCATTGTCACGACGCTGCAGGCGCGCTGCGGCATCGTGGCCGCTGCCAAT
CCCCTGGGCGGCCGCTACAACTCCACCATTCCCTTTTCTGCCAATGTCCAGCTGACGGAGCCCATTCTGTCGCGC
TTTGACATTTTGGTTGTTGTGCGAGACACGGTGGACCCGGCCGAGGACGAGCGTCTGGCCCGCTTCATAGTCGGC
TCCCATGGCCGAAGCCATCCGCAGCAGCCCGGCGCCACGGACCACTCCAGCGCCGCCCAGAGTAACAGCGCCGCC
CAGATTCCCCAGGAGCTGCTGCGCAAGTACATTCTCTATGCGCGCGAGCGCTGCTCTCCCAAGATTTACGACATT
GATGGCGCCAAGGTCTCTCGCCTCTATGCCGACATGCGCCGCGAGTCTCTGGCCACGGGCGCCTATCCCATTACC
GTGCGCCATCTCGAGGCCATTTTCCGCATCAGCGAGGCCTTTTGCCGCATGCGCCTCTCCGACTATTGCTCTCCC
CAAGACATTGACCGCGCCATTGCCGTCACCGTCGACAGCTTCGTCGGCAGCCAAAAGCTGAGCTGCAAGCGAGCA
CTTGCGCGCGCCTTTGCAAAGTATACGCTTGCACGCCCTGGCGCTACAAAACAACAACAACAACAACAACAAGGC
CCACGGCCCACGGCCGCCATGGCCTAG
Transcript >OphauG2|3402
ATGAGTTCCCCTCTGCGAGACAATCCGTCGTCGGCAAATCGAGGCGCGACACGGCGAGACAAGCGCAAGCGTTTG
GGTAACGGGGCTGAGGATGAGGAGTCATCTGTGGGGCCCGACTCGAGCCAAATGCCGTCGTCGCCGCCAGGACGG
TTCAAGGTGGCTCACGGGGCGGACGACGACGACGACGACGACGATATGGAGGACGAGGCGGAGATCCAAGACGAC
ATTGACGATATTGACGAAATGGCGGATGACGATGTGGATCTGTTCCGGGAGGGCTTCGAGGCGGATTACCGCGGG
GGCGAGGGCGACGGGTATCAAGGAGACGACCTGGACGACGAGGGCCAGTACGAGGCGATGGATCTAGGGGCGCGG
CGACGTCTGGAAGACAAGCTCAACAAGCGAGACGGCGAGGTGGCGCGGCGACAGAGGCTGCCAGCAGCGTTTCTC
CCCGGGGAGGAAGACGAGGGCTCGGTGGATCTGACAGCGCAGCCGCGGCGGCGGCGGCACTACGACGAGAATGGC
GAGGACGACATGGAGGTGGACATTATGGACGAGGTGCTGTCGCTGGAGGCGCTGGGGGACGTCAAGGCGGGCAAC
CTGACGGAGTGGGTGGCAACGGCGGCGGTGCAGCGGACGATTAAGCGCGAGTTCAAGTCGTTTCTGACATCGTAC
ACGGACGCGTCGGGGTCGTCGGTGTACGGCAACCGGATCCGGCGGCTGGGGGAGGTGAATGGCGAGTCGCTGGCG
GTGTCGTACGAGCATCTGTCGGAGAGCAAGGCGATCCTGGCGTACTTTGTGGCGAATGCGCCGAGCGCGATGCTC
AAGCTGTTTGACGAGGTGGCGATGGAGGCAGTGCTGCTGCACTACGCCAACTACGAGCGCATCCACTCGGAGATC
CACGTACGCATCTACGAGGTGCCGGTGCACTACACGCTGCGGCAGCTGCGGCAGTCGCACCTCAACTGCCTGGTG
CGGGTGAGCGGCGTGGTGACGCGGCGGACGGGCGTCTTCCCACAGCTCAAGTACGTCAAGTTTGACTGCGGCAAG
TGTGGAGTGACGCTGGGCCCGTTCCAGCAGGAGGCGAATGCCGAGGTCAAGGTGTCGTACTGCCAGAACTGCCAG
TCGCGCGGCCCGTTCCAGGTCAACTCGGAGAAGACGGTGTACCGCAACTACCAGAAGCTGACGCTGCAGGAGGCG
CCGGGGACGGTGGCGGCGGGGCGGCTGCCGCGGCATCGCGAGGTGATTCTGCTGTGGGACCTGATTGACACGGCC
AAGCCGGGGGAGGAGATTGAGGTGACGGGCATCTACCGCAACAGCTACGACGCGCAGCTCAACAACCGCAACGGG
TTCCCGGTGTTTGCGACGGTGCTCGAGGCCAACCACGTGGTCAAGGCGCACGACCAGCTGGCGGGCTTCCGGCTG
ACGGACGAGGACGAGCAGGCGATCCGGCGGCTGTCCAAGGACGGGCGGATTGTGGAGCGCATCATTGAGAGCATG
GCGCCCAGCATCTACGGGCACGGCGACGTCAAGACGGCGGTGGCGCTGTCGCTGTTTGGGGGGGTGGCCAAGGTG
GCGCGGGGGGGGCACCGGGTGCGCGGCGACATCAACGTGCTGCTGCTGGGCGACCCGGGCACGGCCAAGTCGCAG
GTGCTCAAGTACGTGGAGAAGACGGCGCACCGGGCCGTGTTTGCGACGGGGCAGGGCGCCAGCGCGGTGGGCCTG
ACGGCCAGCGTGCGGCGCGACGCGCTGACGAGCGAGTGGACGCTCGAGGGCGGCGCGCTGGTGCTGGCCGACCGC
GGCACGTGTCTGATTGACGAGTTTGACAAGATGAACGACCAGGACCGCACGTCGATCCACGAGGCCATGGAGCAG
CAGACCATATCCATTTCCAAGGCGGGCATTGTCACGACGCTGCAGGCGCGCTGCGGCATCGTGGCCGCTGCCAAT
CCCCTGGGCGGCCGCTACAACTCCACCATTCCCTTTTCTGCCAATGTCCAGCTGACGGAGCCCATTCTGTCGCGC
TTTGACATTTTGGTTGTTGTGCGAGACACGGTGGACCCGGCCGAGGACGAGCGTCTGGCCCGCTTCATAGTCGGC
TCCCATGGCCGAAGCCATCCGCAGCAGCCCGGCGCCACGGACCACTCCAGCGCCGCCCAGAGTAACAGCGCCGCC
CAGATTCCCCAGGAGCTGCTGCGCAAGTACATTCTCTATGCGCGCGAGCGCTGCTCTCCCAAGATTTACGACATT
GATGGCGCCAAGGTCTCTCGCCTCTATGCCGACATGCGCCGCGAGTCTCTGGCCACGGGCGCCTATCCCATTACC
GTGCGCCATCTCGAGGCCATTTTCCGCATCAGCGAGGCCTTTTGCCGCATGCGCCTCTCCGACTATTGCTCTCCC
CAAGACATTGACCGCGCCATTGCCGTCACCGTCGACAGCTTCGTCGGCAGCCAAAAGCTGAGCTGCAAGCGAGCA
CTTGCGCGCGCCTTTGCAAAGTATACGCTTGCACGCCCTGGCGCTACAAAACAACAACAACAACAACAACAAGGC
CCACGGCCCACGGCCGCCATGGCCTAG
Gene >OphauG2|3402
ATGAGGTAAGGTGGCATGCGTGATTTCCGGCCCAAGCTGCTGGACTGTTAAAGGTGAGGCTCGAGACTCACTGGA
TGGACAGTTCCCCTCTGCGAGACAATCCGTCGTCGGCAAATCGAGGCGCGACACGGCGAGACAAGCGCAAGCGTT
TGGGTAACGGGGCTGAGGATGAGGAGTCATCTGTGGGGCCCGACTCGAGCCAAATGCCGTCGTCGCCGCCAGGAC
GGTTCAAGGTGGCTCACGGGGCGGACGACGACGACGACGACGACGATATGGAGGACGAGGCGGAGATCCAAGACG
ACATTGACGATATTGACGAAATGGCGGATGACGATGTGGATCTGTTCCGGGAGGGCTTCGAGGCGGATTACCGCG
GGGGCGAGGGCGACGGGTATCAAGGAGACGACCTGGACGACGAGGGCCAGTACGAGGCGATGGATCTAGGGGCGC
GGCGACGTCTGGAAGACAAGCTCAACAAGCGAGACGGCGAGGTGGCGCGGCGACAGAGGCTGCCAGCAGCGTTTC
TCCCCGGGGAGGAAGACGAGGGCTCGGTGGATCTGACAGCGCAGCCGCGGCGGCGGCGGCACTACGACGAGAATG
GCGAGGACGACATGGAGGTGGACATTATGGACGAGGTGCTGTCGCTGGAGGCGCTGGGGGACGTCAAGGCGGGCA
ACCTGACGGAGTGGGTGGCAACGGCGGCGGTGCAGCGGACGATTAAGCGCGAGTTCAAGTCGTTTCTGACATCGT
ACACGGACGCGTCGGGGTCGTCGGTGTACGGCAACCGGATCCGGCGGCTGGGGGAGGTGAATGGCGAGTCGCTGG
CGGTGTCGTACGAGCATCTGTCGGAGAGCAAGGCGATCCTGGCGTACTTTGTGGCGAATGCGCCGAGCGCGATGC
TCAAGCTGTTTGACGAGGTGGCGATGGAGGCAGTGCTGCTGCACTACGCCAACTACGAGCGCATCCACTCGGAGA
TCCACGTACGCATCTACGAGGTGCCGGTGCACTACACGCTGCGGCAGCTGCGGCAGTCGCACCTCAACTGCCTGG
TGCGGGTGAGCGGCGTGGTGACGCGGCGGACGGGCGTCTTCCCACAGCTCAAGTACGTCAAGTTTGACTGCGGCA
AGTGTGGAGTGACGCTGGGCCCGTTCCAGCAGGAGGCGAATGCCGAGGTCAAGGTGTCGTACTGCCAGAACTGCC
AGTCGCGCGGCCCGTTCCAGGTCAACTCGGAGAAGACGGTGTACCGCAACTACCAGAAGCTGACGCTGCAGGAGG
CGCCGGGGACGGTGGCGGCGGGGCGGCTGCCGCGGCATCGCGAGGTGATTCTGCTGTGGGACCTGATTGACACGG
CCAAGCCGGGGGAGGAGATTGAGGTGACGGGCATCTACCGCAACAGCTACGACGCGCAGCTCAACAACCGCAACG
GGTTCCCGGTGTTTGCGACGGTGCTCGAGGCCAACCACGTGGTCAAGGCGCACGACCAGCTGGCGGGCTTCCGGC
TGACGGACGAGGACGAGCAGGCGATCCGGCGGCTGTCCAAGGACGGGCGGATTGTGGAGCGCATCATTGAGAGCA
TGGCGCCCAGCATCTACGGGCACGGCGACGTCAAGACGGCGGTGGCGCTGTCGCTGTTTGGGGGGGTGGCCAAGG
TGGCGCGGGGGGGGCACCGGGTGCGCGGCGACATCAACGTGCTGCTGCTGGGCGACCCGGGCACGGCCAAGTCGC
AGGTGCTCAAGTACGTGGAGAAGACGGCGCACCGGGCCGTGTTTGCGACGGGGCAGGGCGCCAGCGCGGTGGGCC
TGACGGCCAGCGTGCGGCGCGACGCGCTGACGAGCGAGTGGACGCTCGAGGGCGGCGCGCTGGTGCTGGCCGACC
GCGGCACGTGTCTGATTGACGAGTTTGACAAGATGAACGACCAGGACCGCACGTCGATCCACGAGGCCATGGAGC
AGCAGACCATATCCATTTCCAAGGCGGGCATTGTCACGACGCTGCAGGCGCGCTGCGGCATCGTGGCCGCTGCCA
ATCCCCTGGGCGGCCGCTACAACTCCACCATTCCCTTTTCTGCCAATGTCCAGCTGACGGAGCCCATTCTGTCGC
GCTTTGACATTTTGGTTGTTGTGCGAGACACGGTGGACCCGGCCGAGGACGAGCGTCTGGCCCGCTTCATAGTCG
GCTCCCATGGCCGAAGCCATCCGCAGCAGCCCGGCGCCACGGACCACTCCAGCGCCGCCCAGAGTAACAGCGCCG
CCCAGATTCCCCAGGAGCTGCTGCGCAAGTACATTCTCTATGCGCGCGAGCGCTGCTCTCCCAAGATTTACGACA
TTGATGGCGCCAAGGTCTCTCGCCTCTATGCCGACATGCGCCGCGAGTCTCTGGCCACGGGCGCCTATCCCATTA
CCGTGAGCACAAGGCCCCTTTGCTAATGACCCCTTTGCTAATGACTCCTTTTCCACGCCCCTTTGCTAATGACCC
CTTTGCCCAGGTGCGCCATCTCGAGGCCATTTTCCGCATCAGCGAGGCCTTTTGCCGCATGCGCCTCTCCGACTA
TTGCTCTCCCCAAGACATTGACCGCGCCATTGCCGTCACCGTCGACAGCTTCGTCGGCAGCCAAAAGCTGAGCTG
CAAGCGAGCACTTGCGCGCGCCTTTGCAAAGTATACGCTTGCACGCCCTGGCGCTACAAAACAACAACAACAACA
ACAACAAGGCCCACGGCCCACGGCCGCCATGGCCTAG

© 2023 - Robin Ohm - Utrecht University - The Netherlands

Built with Python Django and Wagtail