Fungal Genomics

at Utrecht University

General Properties

Protein IDHirsu2|2916
Gene name
LocationContig_1727:2268..5041
Strand+
Gene length (bp)2773
Transcript length (bp)2499
Coding sequence length (bp)2499
Protein length (aa) 833

Your browser does not support drawing a protein figure.

PFAM Domains

PFAM Domain ID Short name Long name E-value Start End
PF00493 MCM MCM P-loop domain 4.3E-100 580 804
PF17207 MCM_OB MCM OB domain 1.6E-39 386 514
PF14551 MCM_N MCM N-terminal domain 1.2E-16 219 329

Swissprot hits

[Show all]
Swissprot ID Swissprot Description Start End E-value
sp|P29458|MCM4_SCHPO DNA replication licensing factor mcm4 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm4 PE=1 SV=2 104 829 0.0E+00
sp|P30665|MCM4_YEAST DNA replication licensing factor MCM4 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM4 PE=1 SV=2 11 829 0.0E+00
sp|P33991|MCM4_HUMAN DNA replication licensing factor MCM4 OS=Homo sapiens GN=MCM4 PE=1 SV=5 202 829 0.0E+00
sp|Q6GL41|MCM4_XENTR DNA replication licensing factor mcm4 OS=Xenopus tropicalis GN=mcm4 PE=2 SV=1 202 827 0.0E+00
sp|Q5XK83|MCM4A_XENLA DNA replication licensing factor mcm4-A OS=Xenopus laevis GN=mcm4-a PE=1 SV=1 202 827 0.0E+00
[Show all]
[Show less]
Swissprot ID Swissprot Description Start End E-value
sp|P29458|MCM4_SCHPO DNA replication licensing factor mcm4 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm4 PE=1 SV=2 104 829 0.0E+00
sp|P30665|MCM4_YEAST DNA replication licensing factor MCM4 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM4 PE=1 SV=2 11 829 0.0E+00
sp|P33991|MCM4_HUMAN DNA replication licensing factor MCM4 OS=Homo sapiens GN=MCM4 PE=1 SV=5 202 829 0.0E+00
sp|Q6GL41|MCM4_XENTR DNA replication licensing factor mcm4 OS=Xenopus tropicalis GN=mcm4 PE=2 SV=1 202 827 0.0E+00
sp|Q5XK83|MCM4A_XENLA DNA replication licensing factor mcm4-A OS=Xenopus laevis GN=mcm4-a PE=1 SV=1 202 827 0.0E+00
sp|P49717|MCM4_MOUSE DNA replication licensing factor MCM4 OS=Mus musculus GN=Mcm4 PE=1 SV=1 202 829 0.0E+00
sp|Q5JKB0|MCM4_ORYSJ DNA replication licensing factor MCM4 OS=Oryza sativa subsp. japonica GN=MCM4 PE=3 SV=2 205 829 0.0E+00
sp|P30664|MCM4B_XENLA DNA replication licensing factor mcm4-B OS=Xenopus laevis GN=mcm4-b PE=1 SV=3 202 827 0.0E+00
sp|Q0WVF5|MCM4_ARATH DNA replication licensing factor MCM4 OS=Arabidopsis thaliana GN=MCM4 PE=1 SV=1 375 829 2.0E-179
sp|Q26454|MCM4_DROME DNA replication licensing factor MCM4 OS=Drosophila melanogaster GN=dpa PE=1 SV=2 1 804 4.0E-173
sp|P55862|MCM5A_XENLA DNA replication licensing factor mcm5-A OS=Xenopus laevis GN=mcm5-a PE=1 SV=2 385 829 2.0E-90
sp|O75001|MCM7_SCHPO DNA replication licensing factor mcm7 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm7 PE=1 SV=1 222 830 8.0E-90
sp|P43299|MCM7_ARATH DNA replication licensing factor MCM7 OS=Arabidopsis thaliana GN=MCM7 PE=1 SV=2 357 830 1.0E-89
sp|Q3ZBH9|MCM7_BOVIN DNA replication licensing factor MCM7 OS=Bos taurus GN=MCM7 PE=2 SV=1 347 829 1.0E-89
sp|Q561P5|MCM5_XENTR DNA replication licensing factor mcm5 OS=Xenopus tropicalis GN=mcm5 PE=2 SV=1 385 829 2.0E-89
sp|P33993|MCM7_HUMAN DNA replication licensing factor MCM7 OS=Homo sapiens GN=MCM7 PE=1 SV=4 347 829 5.0E-89
sp|Q6PCI7|MCM5B_XENLA DNA replication licensing factor mcm5-B OS=Xenopus laevis GN=mcm5-b PE=2 SV=1 385 818 6.0E-89
sp|F4KAB8|MCM6_ARATH DNA replication licensing factor MCM6 OS=Arabidopsis thaliana GN=MCM6 PE=1 SV=1 375 829 7.0E-89
sp|P49718|MCM5_MOUSE DNA replication licensing factor MCM5 OS=Mus musculus GN=Mcm5 PE=1 SV=1 384 832 2.0E-88
sp|P55861|MCM2_XENLA DNA replication licensing factor mcm2 OS=Xenopus laevis GN=mcm2 PE=1 SV=2 366 828 3.0E-88
sp|P53091|MCM6_YEAST DNA replication licensing factor MCM6 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM6 PE=1 SV=2 372 806 5.0E-88
sp|Q9VGW6|MCM5_DROME DNA replication licensing factor Mcm5 OS=Drosophila melanogaster GN=Mcm5 PE=1 SV=1 384 814 8.0E-88
sp|P49736|MCM2_HUMAN DNA replication licensing factor MCM2 OS=Homo sapiens GN=MCM2 PE=1 SV=4 366 809 1.0E-87
sp|Q7ZXB1|MCM7B_XENLA DNA replication licensing factor mcm7-B OS=Xenopus laevis GN=mcm7-b PE=2 SV=1 347 829 2.0E-87
sp|Q6DIH3|MCM2_XENTR DNA replication licensing factor mcm2 OS=Xenopus tropicalis GN=mcm2 PE=2 SV=1 366 828 2.0E-87
sp|Q9UXG1|MCM_SULSO Minichromosome maintenance protein MCM OS=Sulfolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) GN=MCM PE=1 SV=1 375 829 2.0E-87
sp|Q6NX31|MCM7_XENTR DNA replication licensing factor mcm7 OS=Xenopus tropicalis GN=mcm7 PE=2 SV=1 347 829 2.0E-87
sp|Q61881|MCM7_MOUSE DNA replication licensing factor MCM7 OS=Mus musculus GN=Mcm7 PE=1 SV=1 347 829 8.0E-87
sp|P49731|MCM6_SCHPO DNA replication licensing factor mcm6 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm6 PE=1 SV=2 366 804 1.0E-86
sp|B8AZX3|MCM6_ORYSI DNA replication licensing factor MCM6 OS=Oryza sativa subsp. indica GN=MCM6 PE=3 SV=1 386 814 2.0E-86
sp|Q6F353|MCM6_ORYSJ DNA replication licensing factor MCM6 OS=Oryza sativa subsp. japonica GN=Os05g0235800 PE=3 SV=1 386 814 2.0E-86
sp|P97310|MCM2_MOUSE DNA replication licensing factor MCM2 OS=Mus musculus GN=Mcm2 PE=1 SV=3 366 809 3.0E-86
sp|Q9V461|MCM6_DROME DNA replication licensing factor Mcm6 OS=Drosophila melanogaster GN=Mcm6 PE=1 SV=1 386 819 3.0E-86
sp|P33992|MCM5_HUMAN DNA replication licensing factor MCM5 OS=Homo sapiens GN=MCM5 PE=1 SV=5 384 805 4.0E-86
sp|Q2QNM1|MCM7_ORYSJ DNA replication licensing factor MCM7 OS=Oryza sativa subsp. japonica GN=MCM7 PE=2 SV=1 375 830 4.0E-86
sp|B8BMI1|MCM7_ORYSI DNA replication licensing factor MCM7 OS=Oryza sativa subsp. indica GN=MCM7 PE=3 SV=1 375 830 4.0E-86
sp|Q0V8B7|MCM5_BOVIN DNA replication licensing factor MCM5 OS=Bos taurus GN=MCM5 PE=2 SV=1 384 832 6.0E-86
sp|Q6P1V8|MCM6Z_XENTR Zygotic DNA replication licensing factor mcm6 OS=Xenopus tropicalis GN=zmcm6 PE=2 SV=1 386 804 7.0E-86
sp|Q91876|MCM7A_XENLA DNA replication licensing factor mcm7-A OS=Xenopus laevis GN=mcm7-a PE=1 SV=2 347 829 1.0E-85
sp|Q29JI9|MCM6_DROPS DNA replication licensing factor Mcm6 OS=Drosophila pseudoobscura pseudoobscura GN=Mcm6 PE=3 SV=1 386 819 1.0E-85
sp|Q7ZY18|MC6ZB_XENLA Zygotic DNA replication licensing factor mcm6-B OS=Xenopus laevis GN=zmcm6-b PE=1 SV=1 386 804 2.0E-85
sp|P40377|MCM2_SCHPO DNA replication licensing factor mcm2 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm2 PE=1 SV=1 340 819 3.0E-85
sp|Q9SX03|MCM33_MAIZE DNA replication licensing factor MCM3 homolog 3 OS=Zea mays GN=ROA3 PE=2 SV=1 291 804 5.0E-85
sp|Q9SX04|MCM32_MAIZE DNA replication licensing factor MCM3 homolog 2 OS=Zea mays GN=ROA2 PE=2 SV=1 291 804 5.0E-85
sp|Q28CM3|MCM6M_XENTR Maternal DNA replication licensing factor mcm6 OS=Xenopus tropicalis GN=mmcm6 PE=2 SV=1 386 804 6.0E-85
sp|Q43704|MCM31_MAIZE DNA replication licensing factor MCM3 homolog 1 OS=Zea mays GN=ROA1 PE=2 SV=2 291 804 6.0E-85
sp|Q7Q0Q1|MCM6_ANOGA DNA replication licensing factor Mcm6 OS=Anopheles gambiae GN=Mcm6 PE=3 SV=3 386 804 8.0E-85
sp|Q0DHC4|MCM3_ORYSJ DNA replication licensing factor MCM3 OS=Oryza sativa subsp. japonica GN=MCM3 PE=2 SV=1 377 804 1.0E-84
sp|B8AZ99|MCM3_ORYSI DNA replication licensing factor MCM3 OS=Oryza sativa subsp. indica GN=MCM3 PE=3 SV=1 377 804 1.0E-84
sp|Q5FWY4|MCM6M_XENLA Maternal DNA replication licensing factor mcm6 OS=Xenopus laevis GN=mmcm6 PE=1 SV=1 386 804 7.0E-84
sp|Q498J7|MC6ZA_XENLA Zygotic DNA replication licensing factor mcm6-A OS=Xenopus laevis GN=zmcm6-a PE=1 SV=1 386 804 1.0E-83
sp|P49735|MCM2_DROME DNA replication licensing factor Mcm2 OS=Drosophila melanogaster GN=Mcm2 PE=1 SV=1 386 809 1.0E-83
sp|P29469|MCM2_YEAST DNA replication licensing factor MCM2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM2 PE=1 SV=2 386 811 4.0E-83
sp|P97311|MCM6_MOUSE DNA replication licensing factor MCM6 OS=Mus musculus GN=Mcm6 PE=1 SV=1 386 804 1.0E-82
sp|Q21902|MCM5_CAEEL DNA replication licensing factor mcm-5 OS=Caenorhabditis elegans GN=mcm-5 PE=3 SV=1 384 821 5.0E-82
sp|Q9FL33|MCM3_ARATH DNA replication licensing factor MCM3 OS=Arabidopsis thaliana GN=MCM3 PE=1 SV=1 292 813 9.0E-82
sp|Q14566|MCM6_HUMAN DNA replication licensing factor MCM6 OS=Homo sapiens GN=MCM6 PE=1 SV=1 386 804 2.0E-81
sp|Q2KIZ8|MCM6_BOVIN DNA replication licensing factor MCM6 OS=Bos taurus GN=MCM6 PE=2 SV=1 386 804 5.0E-81
sp|Q2R482|MCM2_ORYSJ DNA replication licensing factor MCM2 OS=Oryza sativa subsp. japonica GN=MCM2 PE=2 SV=1 368 829 5.0E-81
sp|P29496|MCM5_YEAST Minichromosome maintenance protein 5 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM5 PE=1 SV=1 214 804 8.0E-81
sp|P30666|MCM3_SCHPO DNA replication licensing factor mcm3 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm3 PE=1 SV=2 227 804 9.0E-81
sp|P49739|MCM3M_XENLA Maternal DNA replication licensing factor mcm3 OS=Xenopus laevis GN=mmcm3 PE=1 SV=2 387 804 1.0E-80
sp|Q9LPD9|MCM2_ARATH DNA replication licensing factor MCM2 OS=Arabidopsis thaliana GN=MCM2 PE=1 SV=1 359 809 1.0E-80
sp|P41389|MCM5_SCHPO DNA replication licensing factor mcm5 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) GN=mcm5 PE=1 SV=2 386 804 1.0E-80
sp|B8BKI8|MCM2_ORYSI DNA replication licensing factor MCM2 OS=Oryza sativa subsp. indica GN=OsI_36121 PE=3 SV=1 368 829 2.0E-80
sp|P38132|MCM7_YEAST DNA replication licensing factor MCM7 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM7 PE=1 SV=4 386 822 2.0E-78
sp|Q9XYU0|MCM7_DROME DNA replication licensing factor Mcm7 OS=Drosophila melanogaster GN=Mcm7 PE=1 SV=1 354 829 3.0E-78
sp|Q54CP4|MCM5_DICDI DNA replication licensing factor mcm5 OS=Dictyostelium discoideum GN=mcm5 PE=3 SV=1 254 804 5.0E-78
sp|Q86B14|MCM6_DICDI DNA replication licensing factor mcm6 OS=Dictyostelium discoideum GN=mcm6 PE=3 SV=1 358 813 5.0E-77
sp|B8AEH3|MCM5_ORYSI DNA replication licensing factor MCM5 OS=Oryza sativa subsp. indica GN=MCM5 PE=3 SV=1 385 804 8.0E-77
sp|Q6KAJ4|MCM5_ORYSJ DNA replication licensing factor MCM5 OS=Oryza sativa subsp. japonica GN=MCM5 PE=2 SV=1 385 804 8.0E-77
sp|P24279|MCM3_YEAST DNA replication licensing factor MCM3 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MCM3 PE=1 SV=1 387 809 5.0E-76
sp|Q9XYU1|MCM3_DROME DNA replication licensing factor Mcm3 OS=Drosophila melanogaster GN=Mcm3 PE=1 SV=1 378 812 3.0E-75
sp|Q24849|MCM3_ENTHI DNA replication licensing factor MCM3 OS=Entamoeba histolytica GN=MCM3 PE=3 SV=1 387 804 3.0E-75
sp|Q61J08|MCM6_CAEBR DNA replication licensing factor mcm-6 OS=Caenorhabditis briggsae GN=mcm-6 PE=3 SV=1 359 801 5.0E-74
sp|O80786|MCM5_ARATH DNA replication licensing factor MCM5 OS=Arabidopsis thaliana GN=MCM5 PE=1 SV=1 384 804 6.0E-74
sp|Q7ZXZ0|MCM3Z_XENLA Zygotic DNA replication licensing factor mcm3 OS=Xenopus laevis GN=zmcm3 PE=1 SV=1 387 804 1.0E-73
sp|A4FUD9|MCM3_BOVIN DNA replication licensing factor MCM3 OS=Bos taurus GN=MCM3 PE=2 SV=1 387 817 2.0E-73
sp|Q5R8G6|MCM3_PONAB DNA replication licensing factor MCM3 OS=Pongo abelii GN=MCM3 PE=2 SV=1 387 817 2.0E-73
sp|P34647|MCM6_CAEEL DNA replication licensing factor mcm-6 OS=Caenorhabditis elegans GN=mcm-6 PE=1 SV=1 375 801 5.0E-73
sp|P25205|MCM3_HUMAN DNA replication licensing factor MCM3 OS=Homo sapiens GN=MCM3 PE=1 SV=3 387 817 5.0E-73
sp|Q28BS0|MCM3Z_XENTR Zygotic DNA replication licensing factor mcm3 OS=Xenopus tropicalis GN=zmcm3 PE=2 SV=1 378 804 2.0E-72
sp|Q9SF37|MCM8_ARATH Probable DNA helicase MCM8 OS=Arabidopsis thaliana GN=MCM8 PE=2 SV=2 381 821 2.0E-72
sp|Q5ZMN2|MCM3_CHICK DNA replication licensing factor MCM3 OS=Gallus gallus GN=MCM3 PE=2 SV=1 387 804 5.0E-72
sp|P25206|MCM3_MOUSE DNA replication licensing factor MCM3 OS=Mus musculus GN=Mcm3 PE=1 SV=2 387 817 7.0E-72
sp|D3ZVK1|MCM8_RAT DNA helicase MCM8 OS=Rattus norvegicus GN=Mcm8 PE=3 SV=1 367 803 1.0E-71
sp|Q9CWV1|MCM8_MOUSE DNA helicase MCM8 OS=Mus musculus GN=Mcm8 PE=1 SV=3 367 803 3.0E-71
sp|Q0V9Q6|MCM8_XENTR DNA helicase MCM8 OS=Xenopus tropicalis GN=mcm8 PE=2 SV=1 376 803 2.0E-69
sp|B9FKM7|MCM8_ORYSJ Probable DNA helicase MCM8 OS=Oryza sativa subsp. japonica GN=MCM8 PE=2 SV=1 375 807 5.0E-69
sp|B8AZ14|MCM8_ORYSI Probable DNA helicase MCM8 OS=Oryza sativa subsp. indica GN=MCM8 PE=3 SV=1 375 807 6.0E-69
sp|Q5F310|MCM8_XENLA DNA helicase MCM8 OS=Xenopus laevis GN=mcm8 PE=2 SV=2 360 803 8.0E-69
sp|Q9UJA3|MCM8_HUMAN DNA helicase MCM8 OS=Homo sapiens GN=MCM8 PE=1 SV=2 367 803 5.0E-68
sp|Q62724|MCM6_RAT DNA replication licensing factor MCM6 (Fragment) OS=Rattus norvegicus GN=Mcm6 PE=1 SV=2 575 804 4.0E-67
sp|I0IUP3|MCM8_CHICK DNA helicase MCM8 OS=Gallus gallus GN=MCM8 PE=1 SV=1 376 803 1.0E-65
sp|E1BPX4|MCM8_BOVIN DNA helicase MCM8 OS=Bos taurus GN=MCM8 PE=3 SV=2 367 803 6.0E-64
sp|B8B406|MCM9_ORYSI Probable DNA helicase MCM9 OS=Oryza sativa subsp. indica GN=MCM9 PE=3 SV=1 269 828 2.0E-59
sp|Q69QA6|MCM9_ORYSJ Probable DNA helicase MCM9 OS=Oryza sativa subsp. japonica GN=MCM9 PE=2 SV=1 397 828 4.0E-59
sp|F1QDI9|MCM9_DANRE DNA helicase MCM9 OS=Danio rerio GN=mcm9 PE=3 SV=2 393 801 8.0E-58
sp|Q2KHI9|MCM9_MOUSE DNA helicase MCM9 OS=Mus musculus GN=Mcm9 PE=1 SV=2 393 828 1.0E-57
sp|F1M5F3|MCM9_RAT DNA helicase MCM9 OS=Rattus norvegicus GN=Mcm9 PE=3 SV=2 393 828 1.0E-57
sp|Q6NRM6|MCM9_XENLA DNA helicase MCM9 OS=Xenopus laevis GN=mcm9 PE=1 SV=1 393 801 4.0E-57
sp|F1N2W9|MCM9_BOVIN DNA helicase MCM9 OS=Bos taurus GN=MCM9 PE=3 SV=2 393 828 8.0E-57
sp|F6RIX4|MCM9_XENTR DNA helicase MCM9 OS=Xenopus tropicalis GN=mcm9 PE=3 SV=1 393 801 1.0E-56
sp|Q9NXL9|MCM9_HUMAN DNA helicase MCM9 OS=Homo sapiens GN=MCM9 PE=1 SV=4 393 828 2.0E-56
sp|F4IFF3|MCM9_ARATH Probable DNA helicase MCM9 OS=Arabidopsis thaliana GN=MCM9 PE=3 SV=1 397 828 5.0E-54
sp|I0IUP4|MCM9_CHICK DNA helicase MCM9 OS=Gallus gallus GN=MCM9 PE=1 SV=2 352 801 2.0E-52
sp|Q58884|Y1489_METJA Uncharacterized MCM-type protein MJ1489 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ1489 PE=3 SV=1 386 828 2.0E-38
sp|Q9VF30|MCMR_DROME DNA replication licensing factor REC OS=Drosophila melanogaster GN=rec PE=1 SV=2 385 804 3.0E-31
sp|Q58371|Y961_METJA Uncharacterized MCM-type protein MJ0961 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ0961 PE=3 SV=1 567 806 3.0E-31
sp|Q57809|Y363_METJA Uncharacterized MCM-type protein MJ0363 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) GN=MJ0363 PE=3 SV=1 380 783 2.0E-28
[Show less]

GO

GO Term Description Terminal node
GO:0003677 DNA binding Yes
GO:0032508 DNA duplex unwinding Yes
GO:0005524 ATP binding Yes
GO:0030554 adenyl nucleotide binding No
GO:0008150 biological_process No
GO:0032555 purine ribonucleotide binding No
GO:0071103 DNA conformation change No
GO:0005488 binding No
GO:0032392 DNA geometric change No
GO:0016043 cellular component organization No
GO:0036094 small molecule binding No
GO:0003676 nucleic acid binding No
GO:1901363 heterocyclic compound binding No
GO:0009987 cellular process No
GO:0097159 organic cyclic compound binding No
GO:0017076 purine nucleotide binding No
GO:1901265 nucleoside phosphate binding No
GO:0035639 purine ribonucleoside triphosphate binding No
GO:0043167 ion binding No
GO:0032559 adenyl ribonucleotide binding No
GO:0006996 organelle organization No
GO:0000166 nucleotide binding No
GO:0043168 anion binding No
GO:0032553 ribonucleotide binding No
GO:0003674 molecular_function No
GO:0051276 chromosome organization No
GO:0097367 carbohydrate derivative binding No
GO:0071840 cellular component organization or biogenesis No

SignalP

[Help with interpreting these statistics]
SignalP signal predicted Location
(based on Ymax)
D score
(significance: > 0.45)
No 1 - 44 0.45

Transmembrane Domains

(None)

Transcription Factor Class

(None)

Expression data

No expression data available for this genome

Sequences

Type of sequenceSequence
Locus Download genbank file of locus
The gene with 5 kb flanks (if sufficient flanking sequence is available). For use in cloning design programs. NOTE: features (genes or exons) that are only partially contained within the sequence are completely excluded.
Protein >Hirsu2|2916
MSSPSNRRQQSSQSATPRRSTRQSSQLASSPLFFQSSPAQGSARQDEANDQVSSPLRQISSSQSTHARGPAPSSP
LRQMTDSQTPRDDDPQRTPRASGLHAGESSPIRYEPSSSPGRSQRPQSDLRSESSGLFVGSQRGGSAAYRRGDIN
SDAARTPRAPRRIILDDAGHVVREGQTPGSDAGSFANRDPNTSEADILGGQGQSLIWGTTVSIDDTFASFKDFLR
NFTKKYRMYRDGLSDEQVAEALDAESKPYWEALENMLLLGTTRLYLDISDLNLYPPTRKLWHQIQAYPQEIVPVM
DQSVHDMMVELARTDSLRNRPSQSSAGNPDTPQATQSSEPVFPSSDRPEDPATPRPPQDQQPSLEDQVAASIYVV
RPFGLDRSTNLRDLNPSDMDRLICIKGLVIRTTPVIPDMKDAFFRCNVCNHSVNVGLDRGKIREPTECPRQICGS
KNSMQIVHNRCSFEDKQVIKLQETPDAVPAGQTPHSVSVCVYNELVDFCKAGDRVELTGIFRVSPMRVNPRQRTL
KSVYKTYVDVLHVQKVDRRRMGADPSTLGVEGEAAAADKDGNELEETRVISAEDEAKIRETAARPDVYDLLSRSL
APSIYEMDDVKKGILLQLFGGTNKTFHKGGSPKYRGDINVLLCGDPSTSKSQLLSYVHKIAPRGIYTSGKGSSAV
GLTAYVTRDPETRQLVLESGALVLSDGGVCCIDEFDKMSDATRSVLHEVMEQQTVSVAKAGIITTLNARSSILAS
ANPIGSRYNPDLSVPQNIDLPPTLLSRFDLVYLILDRVDEKADKRLARHLLSLYLEDKPHSAPANRDILPVEFLT
AYISSRA*
Coding >Hirsu2|2916
ATGTCGTCGCCGTCGAATCGGCGGCAGCAAAGCTCGCAGTCGGCGACGCCTCGCCGCTCCACGCGCCAGTCCTCG
CAGCTCGCCTCCAGCCCCCTCTTCTTCCAGTCGTCGCCCGCCCAAGGGAGCGCGCGACAGGATGAGGCAAACGAC
CAGGTCTCGTCGCCGCTGAGGCAAATTTCGAGCAGCCAAAGCACCCACGCCCGCGGCCCTGCCCCCAGCTCGCCC
TTGCGGCAGATGACGGACTCGCAGACGCCTCGCGACGATGATCCGCAGAGGACGCCGAGGGCCAGTGGCCTGCAC
GCCGGAGAGTCGTCGCCCATCCGATACGAGCCGAGTTCCAGTCCCGGTCGCTCACAGAGGCCGCAGTCGGACCTC
CGCAGCGAGAGCAGCGGCCTCTTCGTCGGCTCGCAGCGCGGGGGCTCTGCCGCCTACCGGCGCGGCGACATCAAT
TCGGATGCCGCCAGGACCCCGCGCGCGCCCCGGCGCATCATCCTGGACGACGCGGGCCACGTCGTTCGCGAGGGC
CAGACACCCGGCTCTGACGCCGGCTCCTTCGCCAACCGAGACCCCAACACCTCCGAGGCCGACATCCTCGGCGGC
CAGGGCCAGAGCCTCATCTGGGGCACAACCGTGTCCATCGACGACACGTTCGCCTCCTTCAAAGACTTCTTGCGC
AACTTCACCAAAAAGTACCGCATGTACCGCGATGGCCTCTCGGACGAGCAAGTCGCCGAGGCCCTTGACGCCGAG
TCGAAGCCGTACTGGGAGGCCCTGGAAAACATGCTGCTCCTGGGCACGACGAGGCTCTATCTCGACATTTCCGAC
CTCAATCTGTACCCGCCCACCCGGAAGCTCTGGCATCAGATCCAGGCCTATCCGCAGGAGATCGTCCCCGTCATG
GACCAGTCAGTCCACGACATGATGGTCGAGCTCGCCCGCACCGACAGCCTCCGGAACCGGCCGTCGCAGAGCAGC
GCCGGCAATCCCGACACTCCGCAGGCCACGCAGAGCTCCGAGCCCGTCTTCCCCAGTTCGGACAGGCCGGAGGAT
CCTGCTACGCCTCGACCGCCGCAGGACCAGCAGCCGTCGTTGGAGGACCAGGTTGCTGCGTCCATCTACGTCGTG
CGCCCCTTCGGCCTCGATCGCTCGACCAACCTGAGAGACCTCAATCCGTCCGACATGGATCGCTTGATTTGCATC
AAGGGGCTGGTCATCCGTACCACGCCCGTGATCCCCGACATGAAGGACGCCTTCTTCCGCTGCAATGTCTGCAAC
CACTCGGTCAACGTCGGCCTGGATCGCGGCAAGATCCGTGAGCCGACCGAGTGCCCTCGACAGATCTGCGGCTCC
AAGAACTCGATGCAGATCGTGCACAACAGATGCTCGTTCGAGGACAAGCAGGTCATCAAGCTGCAGGAAACGCCC
GACGCCGTGCCGGCGGGCCAGACGCCGCACTCCGTCTCCGTCTGCGTCTACAATGAGCTGGTCGACTTCTGCAAG
GCCGGCGACCGGGTCGAGCTGACGGGCATCTTCCGCGTCAGCCCGATGCGGGTGAACCCGCGGCAGCGGACCCTC
AAGAGCGTCTACAAGACGTACGTCGACGTGCTGCACGTCCAGAAGGTGGACCGCAGGCGCATGGGGGCGGACCCG
TCGACGCTGGGCGTCGAGGGAGAGGCGGCGGCGGCGGACAAGGACGGCAACGAGCTCGAGGAGACGCGCGTCATC
TCGGCCGAGGACGAGGCCAAGATCCGCGAGACGGCGGCGCGGCCGGACGTGTACGACCTGCTGTCGCGGTCGCTG
GCCCCCTCCATCTACGAGATGGACGACGTCAAGAAGGGCATCCTGCTGCAGCTCTTCGGCGGCACCAACAAGACG
TTCCACAAGGGCGGCAGCCCCAAGTACCGCGGCGACATCAACGTGCTGCTGTGCGGCGACCCGTCGACGTCCAAG
TCGCAGCTGCTGTCGTACGTGCACAAGATCGCGCCGCGCGGCATCTACACCAGCGGCAAGGGGTCGTCGGCGGTG
GGCCTGACGGCGTACGTGACGCGCGACCCGGAGACGCGGCAGCTGGTGCTCGAGTCGGGCGCGCTTGTGCTGTCG
GACGGCGGCGTGTGCTGCATCGACGAGTTCGACAAGATGTCGGACGCGACGCGGTCGGTGCTGCACGAGGTGATG
GAGCAGCAGACGGTGTCGGTGGCCAAGGCCGGCATCATCACGACGCTCAACGCGCGCAGCAGCATCCTGGCCTCG
GCCAACCCGATCGGCAGCCGCTACAACCCGGACCTGTCGGTGCCACAGAACATCGACCTGCCGCCGACGCTGCTG
TCGCGCTTCGACCTCGTCTACCTCATCCTCGACCGGGTCGACGAGAAGGCGGACAAGCGGCTGGCGCGGCACCTG
CTGTCGCTCTACCTCGAGGACAAGCCGCACTCGGCGCCGGCCAACCGCGACATCCTGCCGGTCGAGTTCCTGACG
GCCTACATCTCCTCGAGAGCATGA
Transcript >Hirsu2|2916
ATGTCGTCGCCGTCGAATCGGCGGCAGCAAAGCTCGCAGTCGGCGACGCCTCGCCGCTCCACGCGCCAGTCCTCG
CAGCTCGCCTCCAGCCCCCTCTTCTTCCAGTCGTCGCCCGCCCAAGGGAGCGCGCGACAGGATGAGGCAAACGAC
CAGGTCTCGTCGCCGCTGAGGCAAATTTCGAGCAGCCAAAGCACCCACGCCCGCGGCCCTGCCCCCAGCTCGCCC
TTGCGGCAGATGACGGACTCGCAGACGCCTCGCGACGATGATCCGCAGAGGACGCCGAGGGCCAGTGGCCTGCAC
GCCGGAGAGTCGTCGCCCATCCGATACGAGCCGAGTTCCAGTCCCGGTCGCTCACAGAGGCCGCAGTCGGACCTC
CGCAGCGAGAGCAGCGGCCTCTTCGTCGGCTCGCAGCGCGGGGGCTCTGCCGCCTACCGGCGCGGCGACATCAAT
TCGGATGCCGCCAGGACCCCGCGCGCGCCCCGGCGCATCATCCTGGACGACGCGGGCCACGTCGTTCGCGAGGGC
CAGACACCCGGCTCTGACGCCGGCTCCTTCGCCAACCGAGACCCCAACACCTCCGAGGCCGACATCCTCGGCGGC
CAGGGCCAGAGCCTCATCTGGGGCACAACCGTGTCCATCGACGACACGTTCGCCTCCTTCAAAGACTTCTTGCGC
AACTTCACCAAAAAGTACCGCATGTACCGCGATGGCCTCTCGGACGAGCAAGTCGCCGAGGCCCTTGACGCCGAG
TCGAAGCCGTACTGGGAGGCCCTGGAAAACATGCTGCTCCTGGGCACGACGAGGCTCTATCTCGACATTTCCGAC
CTCAATCTGTACCCGCCCACCCGGAAGCTCTGGCATCAGATCCAGGCCTATCCGCAGGAGATCGTCCCCGTCATG
GACCAGTCAGTCCACGACATGATGGTCGAGCTCGCCCGCACCGACAGCCTCCGGAACCGGCCGTCGCAGAGCAGC
GCCGGCAATCCCGACACTCCGCAGGCCACGCAGAGCTCCGAGCCCGTCTTCCCCAGTTCGGACAGGCCGGAGGAT
CCTGCTACGCCTCGACCGCCGCAGGACCAGCAGCCGTCGTTGGAGGACCAGGTTGCTGCGTCCATCTACGTCGTG
CGCCCCTTCGGCCTCGATCGCTCGACCAACCTGAGAGACCTCAATCCGTCCGACATGGATCGCTTGATTTGCATC
AAGGGGCTGGTCATCCGTACCACGCCCGTGATCCCCGACATGAAGGACGCCTTCTTCCGCTGCAATGTCTGCAAC
CACTCGGTCAACGTCGGCCTGGATCGCGGCAAGATCCGTGAGCCGACCGAGTGCCCTCGACAGATCTGCGGCTCC
AAGAACTCGATGCAGATCGTGCACAACAGATGCTCGTTCGAGGACAAGCAGGTCATCAAGCTGCAGGAAACGCCC
GACGCCGTGCCGGCGGGCCAGACGCCGCACTCCGTCTCCGTCTGCGTCTACAATGAGCTGGTCGACTTCTGCAAG
GCCGGCGACCGGGTCGAGCTGACGGGCATCTTCCGCGTCAGCCCGATGCGGGTGAACCCGCGGCAGCGGACCCTC
AAGAGCGTCTACAAGACGTACGTCGACGTGCTGCACGTCCAGAAGGTGGACCGCAGGCGCATGGGGGCGGACCCG
TCGACGCTGGGCGTCGAGGGAGAGGCGGCGGCGGCGGACAAGGACGGCAACGAGCTCGAGGAGACGCGCGTCATC
TCGGCCGAGGACGAGGCCAAGATCCGCGAGACGGCGGCGCGGCCGGACGTGTACGACCTGCTGTCGCGGTCGCTG
GCCCCCTCCATCTACGAGATGGACGACGTCAAGAAGGGCATCCTGCTGCAGCTCTTCGGCGGCACCAACAAGACG
TTCCACAAGGGCGGCAGCCCCAAGTACCGCGGCGACATCAACGTGCTGCTGTGCGGCGACCCGTCGACGTCCAAG
TCGCAGCTGCTGTCGTACGTGCACAAGATCGCGCCGCGCGGCATCTACACCAGCGGCAAGGGGTCGTCGGCGGTG
GGCCTGACGGCGTACGTGACGCGCGACCCGGAGACGCGGCAGCTGGTGCTCGAGTCGGGCGCGCTTGTGCTGTCG
GACGGCGGCGTGTGCTGCATCGACGAGTTCGACAAGATGTCGGACGCGACGCGGTCGGTGCTGCACGAGGTGATG
GAGCAGCAGACGGTGTCGGTGGCCAAGGCCGGCATCATCACGACGCTCAACGCGCGCAGCAGCATCCTGGCCTCG
GCCAACCCGATCGGCAGCCGCTACAACCCGGACCTGTCGGTGCCACAGAACATCGACCTGCCGCCGACGCTGCTG
TCGCGCTTCGACCTCGTCTACCTCATCCTCGACCGGGTCGACGAGAAGGCGGACAAGCGGCTGGCGCGGCACCTG
CTGTCGCTCTACCTCGAGGACAAGCCGCACTCGGCGCCGGCCAACCGCGACATCCTGCCGGTCGAGTTCCTGACG
GCCTACATCTCCTCGAGAGCATGA
Gene >Hirsu2|2916
ATGTCGTCGCCGTCGAATCGGCGGCAGCAAAGCTCGCAGTCGGCGACGCCTCGCCGCTCCACGCGCCAGTCCTCG
CAGCTCGCCTCCAGCCCCCTCTTCTTCCAGTCGTCGCCCGCCCAAGGGAGCGCGCGACAGGATGAGGCAAACGAC
CAGGTCTCGTCGCCGCTGAGGCAAATTTCGAGCAGCCAAAGCACCCACGCCCGCGGCCCTGCCCCCAGCTCGCCC
TTGCGGCAGATGACGGACTCGCAGACGCCTCGCGACGATGATCCGCAGAGGACGCCGAGGGCCAGTGGCCTGCAC
GCCGGAGGTAAGGCGCATGGCCTGACGCAGCGGGGGTCTCATTTTCGTCATGTACTGACGAATTCACAGAGTCGT
CGCCCATCCGATACGAGCCGAGTTCCAGTCCCGGTCGCTCACAGAGGCCGCAGTCGGACCTCCGCAGCGAGAGCA
GCGGCCTCTTCGTCGGCTCGCAGCGCGGGGGCTCTGCCGCCTACCGGCGCGGCGACATCAATTCGGATGCCGCCA
GGACCCCGCGCGCGCCCCGGCGCATCATCCTGGACGACGCGGGCCACGTCGTTCGCGAGGGCCAGACACCCGGCT
CTGACGCCGGCTCCTTCGCCAACCGAGACCCCAACACCTCCGAGGCCGACATCCTCGGCGGCCAGGGCCAGAGCC
TCATCTGGGGCACAACCGTGTCCATCGACGACACGTTCGCCTCCTTCAAAGACTTCTTGCGCAACTTCACCAAAA
AGTACCGCATGTACCGCGATGGCCTCTCGGACGAGCAAGTCGCCGAGGCCCTTGACGCCGAGTCGAAGCCGTACT
GGGAGGCCCTGGAAAACATGCTGCTCCTGGGCACGACGAGGCTCTATCTCGACATTTCCGACCTCAATCTGTACC
CGCCCACCCGGAAGCTCTGGCATCAGATCCAGGCCTATCCGCAGGAGATCGTCCCCGTCATGGACCAGTCAGTCC
ACGACATGATGGTCGAGCTCGCCCGCACCGACAGCCTCCGGAACCGGCCGTCGCAGAGCAGCGCCGGCAATCCCG
ACACTCCGCAGGCCACGCAGAGCTCCGAGCCCGTCTTCCCCAGTTCGGACAGGCCGGAGGATCCTGCTACGCCTC
GACCGCCGCAGGACCAGCAGCCGTCGTTGGAGGACCAGGTTGCTGCGTCCATCTACGTCGTGCGCCCCTTCGGCC
TCGATCGCTCGACCAACCTGAGAGACCTCAATCCGTCCGGTAAGGAGACCGACGAAAAGCGGGTGCGACGACGTG
GGGGCGTCTGGATAGATGTGCTGACGATTTTGAGGCGCAGACATGGATCGCTTGATTTGCATCAAGGGGCTGGTC
ATCCGTACCACGCCCGTGATCCCCGACATGAAGGACGCCTTCTTCCGCTGCAATGTCTGCAACCACTCGGTCAAC
GTCGGCCTGGATCGCGGCAAGATCCGTGAGCCGACCGAGTGCCCTCGACAGATCTGCGGCTCCAAGAACTCGATG
CAGATCGTGCACAACAGATGCTCGTTCGAGGACAAGCAGGTCATCAAGCTGCAGGAAACGCCCGACGCCGTGCCG
GCGGGCCAGACGCCGCACTCCGTCTCCGTCTGCGTCTACAATGAGCTGGTCGACTTCTGCAAGGCCGGCGACCGG
GTCGAGCTGACGGGCATCTTCCGCGTCAGCCCGATGCGGGTGAACCCGCGGCAGCGGACCCTCAAGAGCGTCTAC
AAGACGTACGTCGACGTGCTGCACGTCCAGAAGGTGGACCGCAGGCGCATGGGGGCGGACCCGTCGACGCTGGGC
GTCGAGGGAGAGGCGGCGGCGGCGGACAAGGACGGCAACGAGCTCGAGGAGACGCGCGTCATCTCGGCCGAGGAC
GAGGCCAAGATCCGCGAGACGGCGGCGCGGCCGGACGTGTACGACCTGCTGTCGCGGTCGCTGGCCCCCTCCATC
TACGAGATGGACGACGTCAAGAAGGGCATCCTGCTGCAGCTCTTCGGCGGCACCAACAAGACGTTCCACAAGGGC
GGCAGCCCCAAGTACCGCGGCGACATCAACGTGCTGCTGTGCGGCGACCCGTCGACGTCCAAGTCGCAGCTGCTG
TCGTACGTGCACAAGATCGCGCCGCGCGGCATCTACACCAGCGGCAAGGGGTCGTCGGCGGTGGGCCTGACGGCG
TACGTGACGCGCGACCCGGAGACGCGGCAGCTGGTGCTCGAGTCGGGCGCGCTTGTGCTGTCGGACGGCGGCGTG
TGCTGCATCGACGAGTTCGACAAGATGTCGGACGCGACGCGGTCGGTGCTGCACGAGGTGATGGAGCAGCAGACG
GTGTCGGTGGCCAAGGCCGGCATCATCACGACGCTCAACGCGCGCAGCAGCATCCTGGCCTCGGCCAACCCGATC
GGCAGCCGCTACAACCCGGACCTGTCGGTGCCACAGAACATCGACCTGCCGCCGACGCTGCTGTCGCGCTTCGAC
CTCGTCTACCTCATCCTCGACCGGGTCGACGAGAAGGCGGACAAGCGGCTGGCGCGGCACCTGCTGTCGCTCTAC
CTCGAGGACAAGCCGCACTCGGCGCCGGCCAACCGCGACATCCTGCCGGTCGAGTTCCTGACGGCCTACATCTCG
TACGCGCGCGCGCGCGTGCAGCCGGCGCTGTCGCCCGAGGCCGCGCGCGAGCTCGTCGACTGCTACGTCGCCATG
CGCGCCCTGGGCCACGACGTGCGCGCCGCCGAGGCCCGCATCACTGCCACGACGCGCCAGCTCGAGAGCATGA

© 2022 - Robin Ohm - Utrecht University - The Netherlands

Built with Python Django and Wagtail