Fungal Genomics

at Utrecht University

General Properties

Protein IDHirsu2|10289
Gene name
LocationContig_817:107..1234
Strand-
Gene length (bp)1127
Transcript length (bp)912
Coding sequence length (bp)912
Protein length (aa) 304

Your browser does not support drawing a protein figure.

PFAM Domains

PFAM Domain ID Short name Long name E-value Start End
PF00067 p450 Cytochrome P450 1.7E-06 94 251

Swissprot hits

[Show all]
Swissprot ID Swissprot Description Start End E-value
sp|P16141|CP52D_CANMA Cytochrome P450 52A4 OS=Candida maltosa GN=CYP52A4 PE=1 SV=4 75 302 2.0E-29
sp|P24458|CP52E_CANMA Cytochrome P450 52A3-B OS=Candida maltosa GN=CYP52A3-B PE=1 SV=1 64 303 1.0E-28
sp|P10615|CP52A_CANTR Cytochrome P450 52A1 OS=Candida tropicalis GN=CYP52A1 PE=1 SV=3 75 300 3.0E-27
sp|Q9Y758|CP52M_DEBHN Cytochrome P450 52A13 OS=Debaryomyces hansenii GN=CYP52A13 PE=2 SV=1 87 303 4.0E-27
sp|P16496|CP52C_CANMA Cytochrome P450 52A3-A OS=Candida maltosa GN=CYP52A3-A PE=1 SV=3 98 303 5.0E-27
[Show all]
[Show less]
Swissprot ID Swissprot Description Start End E-value
sp|P16141|CP52D_CANMA Cytochrome P450 52A4 OS=Candida maltosa GN=CYP52A4 PE=1 SV=4 75 302 2.0E-29
sp|P24458|CP52E_CANMA Cytochrome P450 52A3-B OS=Candida maltosa GN=CYP52A3-B PE=1 SV=1 64 303 1.0E-28
sp|P10615|CP52A_CANTR Cytochrome P450 52A1 OS=Candida tropicalis GN=CYP52A1 PE=1 SV=3 75 300 3.0E-27
sp|Q9Y758|CP52M_DEBHN Cytochrome P450 52A13 OS=Debaryomyces hansenii GN=CYP52A13 PE=2 SV=1 87 303 4.0E-27
sp|P16496|CP52C_CANMA Cytochrome P450 52A3-A OS=Candida maltosa GN=CYP52A3-A PE=1 SV=3 98 303 5.0E-27
sp|P30607|CP52B_CANTR Cytochrome P450 52A2 OS=Candida tropicalis GN=CYP52A2 PE=1 SV=1 102 300 8.0E-27
sp|Q12581|CP52X_CANMA Cytochrome P450 52A5 OS=Candida maltosa GN=CYP52A5 PE=1 SV=1 89 299 3.0E-26
sp|P30608|CP52F_CANTR Cytochrome P450 52A6 OS=Candida tropicalis GN=CYP52A6 PE=2 SV=1 57 303 2.0E-25
sp|Q12589|CP52K_CANMA Cytochrome P450 52A11 OS=Candida maltosa GN=CYP52A11 PE=2 SV=1 89 296 3.0E-25
sp|Q9Y757|CP52L_DEBHN Cytochrome P450 52A12 OS=Debaryomyces hansenii GN=CYP52A12 PE=2 SV=2 20 303 3.0E-25
sp|Q12588|CP52J_CANMA Cytochrome P450 52A10 OS=Candida maltosa GN=CYP52A10 PE=2 SV=1 89 296 1.0E-23
sp|P30610|CP52H_CANTR Cytochrome P450 52A8 OS=Candida tropicalis GN=CYP52A8 PE=2 SV=1 107 299 2.0E-23
sp|Q12586|CP52I_CANMA Cytochrome P450 52A9 OS=Candida maltosa GN=CYP52A9 PE=1 SV=1 3 296 3.0E-23
sp|P30609|CP52G_CANTR Cytochrome P450 52A7 OS=Candida tropicalis GN=CYP52A7 PE=2 SV=1 86 299 1.0E-21
sp|Q12585|CP52T_CANMA Cytochrome P450 52D1 OS=Candida maltosa GN=CYP52D1 PE=2 SV=1 82 300 3.0E-20
sp|P30612|CP52P_CANTR Cytochrome P450 52C1 OS=Candida tropicalis GN=CYP52C1 PE=2 SV=1 19 296 5.0E-20
sp|Q12573|CP52W_CANAP Cytochrome P450 52E2 OS=Candida apicola GN=CYP52E2 PE=3 SV=1 38 290 2.0E-19
sp|P43083|CP52V_CANAP Cytochrome P450 52E1 OS=Candida apicola GN=CYP52E1 PE=3 SV=1 44 290 6.0E-18
sp|D4AY62|A1131_ARTBC Cytochrome P450 ARB_01131 OS=Arthroderma benhamiae (strain ATCC MYA-4681 / CBS 112371) GN=ARB_01131 PE=3 SV=1 13 301 6.0E-18
sp|Q9C788|C70B1_ARATH Cytochrome P450 704B1 OS=Arabidopsis thaliana GN=CYP704B1 PE=1 SV=1 82 287 1.0E-14
sp|Q50EK3|C04C1_PINTA Cytochrome P450 704C1 OS=Pinus taeda GN=CYP704C1 PE=2 SV=1 100 246 1.0E-12
sp|Q12587|CP52Q_CANMA Cytochrome P450 52C2 OS=Candida maltosa GN=CYP52C2 PE=2 SV=1 89 296 2.0E-12
sp|P98188|C94A2_VICSA Cytochrome P450 94A2 OS=Vicia sativa GN=CYP94A2 PE=2 SV=1 93 296 2.0E-10
sp|O81117|C94A1_VICSA Cytochrome P450 94A1 OS=Vicia sativa GN=CYP94A1 PE=2 SV=2 94 247 2.0E-10
sp|Q9ZUX1|C94C1_ARATH Cytochrome P450 94C1 OS=Arabidopsis thaliana GN=CYP94C1 PE=2 SV=1 77 291 2.0E-09
sp|Q9CAD6|C86A7_ARATH Cytochrome P450 86A7 OS=Arabidopsis thaliana GN=CYP86A7 PE=2 SV=1 102 246 6.0E-09
sp|O23066|C86A2_ARATH Cytochrome P450 86A2 OS=Arabidopsis thaliana GN=CYP86A2 PE=1 SV=1 102 246 4.0E-08
sp|Q9FMV7|C94B1_ARATH Cytochrome P450 94B1 OS=Arabidopsis thaliana GN=CYP94B1 PE=2 SV=1 96 234 4.0E-08
sp|Q9FMY1|C86B1_ARATH Cytochrome P450 86B1 OS=Arabidopsis thaliana GN=CYP86B1 PE=2 SV=1 51 230 1.0E-07
sp|P30611|CP52N_CANTR Cytochrome P450 52B1 OS=Candida tropicalis GN=CYP52B1 PE=2 SV=1 89 249 2.0E-07
sp|Q9LMM1|C86A4_ARATH Cytochrome P450 86A4 OS=Arabidopsis thaliana GN=CYP86A4 PE=1 SV=1 102 246 1.0E-06
sp|B3RFJ6|86A22_PETHY Cytochrome P450 86A22 OS=Petunia hybrida GN=CYP86A22 PE=1 SV=1 97 246 5.0E-06
[Show less]

GO

GO Term Description Terminal node
GO:0004497 monooxygenase activity Yes
GO:0016705 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen Yes
GO:0005506 iron ion binding Yes
GO:0020037 heme binding Yes
GO:0016491 oxidoreductase activity No
GO:0046906 tetrapyrrole binding No
GO:0003824 catalytic activity No
GO:0046872 metal ion binding No
GO:0046914 transition metal ion binding No
GO:0097159 organic cyclic compound binding No
GO:0005488 binding No
GO:0043167 ion binding No
GO:1901363 heterocyclic compound binding No
GO:0043169 cation binding No
GO:0003674 molecular_function No

SignalP

[Help with interpreting these statistics]
SignalP signal predicted Location
(based on Ymax)
D score
(significance: > 0.45)
No 1 - 24 0.5

Transmembrane Domains

Domain # Start End Length
1 7 29 22

Transcription Factor Class

(None)

Expression data

No expression data available for this genome

Sequences

Type of sequenceSequence
Locus Download genbank file of locus
The gene with 5 kb flanks (if sufficient flanking sequence is available). For use in cloning design programs. NOTE: features (genes or exons) that are only partially contained within the sequence are completely excluded.
Protein >Hirsu2|10289
MGLVDAILGHVSLASVALFVVSALVVRHVVQRVDEHQRITRLGGYAPSIKPCWAPLGIDFIVRGFRAQLRDQTYD
FWRNGFFARADAWTVETRVVGQRALFTADPDNIKAMLSTQFGDFGKGQPFHDEWEAFLGDGIFATDGALWQASRQ
LIRPQFTRDRVSDLDCFESHVQTLFAVMAKAEAAPAGQTATRHKPPASVPSSSRGRVVEMTDLFYRFTLDVTTDF
LLGADVKSLTSSEQGFANAWDEVQLLQCLINRTFAFGRLLPMPRFHACLGVVNNFVNTFIDRVLGLAPDELAAKD
EGG*
Coding >Hirsu2|10289
ATGGGCCTTGTCGATGCCATCCTGGGGCACGTGTCCCTCGCCTCCGTCGCTCTCTTCGTCGTCTCCGCCCTCGTC
GTCCGCCATGTCGTCCAGCGCGTCGACGAGCATCAGCGCATCACCCGCCTCGGCGGCTACGCCCCGTCCATCAAG
CCGTGCTGGGCTCCTCTAGGCATCGACTTCATCGTGCGCGGCTTCCGCGCCCAGCTGCGCGACCAGACGTACGAC
TTCTGGCGCAACGGCTTCTTCGCCCGCGCCGACGCTTGGACGGTGGAGACGCGCGTCGTCGGCCAGCGCGCCCTT
TTCACCGCCGACCCGGACAACATCAAGGCCATGCTGTCGACGCAGTTCGGCGACTTCGGCAAGGGCCAGCCCTTC
CACGACGAGTGGGAGGCCTTCCTCGGCGACGGCATCTTCGCCACCGACGGCGCCCTCTGGCAGGCCAGCCGCCAG
CTGATCCGGCCCCAGTTCACGCGCGACCGCGTCAGCGACCTCGACTGCTTCGAGTCCCACGTTCAGACACTCTTC
GCCGTCATGGCCAAGGCCGAGGCCGCGCCCGCCGGCCAGACCGCCACCCGGCACAAGCCTCCGGCCTCGGTCCCG
TCCTCGAGCCGCGGCCGCGTCGTCGAGATGACCGATCTCTTCTATCGCTTCACCCTCGACGTCACCACCGACTTT
CTCCTCGGCGCCGACGTCAAGTCTCTCACCTCGTCCGAGCAAGGATTCGCCAACGCCTGGGACGAGGTCCAGCTC
CTGCAGTGCCTCATCAACCGCACCTTCGCCTTCGGCCGGCTGCTGCCGATGCCGCGCTTTCACGCCTGCCTCGGC
GTCGTCAACAACTTCGTCAACACATTCATCGACCGCGTGCTCGGCCTGGCGCCCGACGAGCTCGCGGCCAAGGAC
GAGGGCGGGTGA
Transcript >Hirsu2|10289
ATGGGCCTTGTCGATGCCATCCTGGGGCACGTGTCCCTCGCCTCCGTCGCTCTCTTCGTCGTCTCCGCCCTCGTC
GTCCGCCATGTCGTCCAGCGCGTCGACGAGCATCAGCGCATCACCCGCCTCGGCGGCTACGCCCCGTCCATCAAG
CCGTGCTGGGCTCCTCTAGGCATCGACTTCATCGTGCGCGGCTTCCGCGCCCAGCTGCGCGACCAGACGTACGAC
TTCTGGCGCAACGGCTTCTTCGCCCGCGCCGACGCTTGGACGGTGGAGACGCGCGTCGTCGGCCAGCGCGCCCTT
TTCACCGCCGACCCGGACAACATCAAGGCCATGCTGTCGACGCAGTTCGGCGACTTCGGCAAGGGCCAGCCCTTC
CACGACGAGTGGGAGGCCTTCCTCGGCGACGGCATCTTCGCCACCGACGGCGCCCTCTGGCAGGCCAGCCGCCAG
CTGATCCGGCCCCAGTTCACGCGCGACCGCGTCAGCGACCTCGACTGCTTCGAGTCCCACGTTCAGACACTCTTC
GCCGTCATGGCCAAGGCCGAGGCCGCGCCCGCCGGCCAGACCGCCACCCGGCACAAGCCTCCGGCCTCGGTCCCG
TCCTCGAGCCGCGGCCGCGTCGTCGAGATGACCGATCTCTTCTATCGCTTCACCCTCGACGTCACCACCGACTTT
CTCCTCGGCGCCGACGTCAAGTCTCTCACCTCGTCCGAGCAAGGATTCGCCAACGCCTGGGACGAGGTCCAGCTC
CTGCAGTGCCTCATCAACCGCACCTTCGCCTTCGGCCGGCTGCTGCCGATGCCGCGCTTTCACGCCTGCCTCGGC
GTCGTCAACAACTTCGTCAACACATTCATCGACCGCGTGCTCGGCCTGGCGCCCGACGAGCTCGCGGCCAAGGAC
GAGGGCGGGTGA
Gene >Hirsu2|10289
ATGGGCCTTGTCGATGCCATCCTGGGGCACGTGTCCCTCGCCTCCGTCGCTCTCTTCGTCGTCTCCGCCCTCGTC
GTCCGCCATGTCGTCCAGCGCGTCGACGAGCATCAGCGCATCACCCGCCTCGGCGGCTACGCCCCGTCCATCAAG
CCGTGCTGGGCTCCTCTAGGTCCGTCATGCTCGCTCTGTTCCTCCCCTCCCAGACCCGGCCCGGCTCACCGGCGG
CGGCAGGCATCGACTTCATCGTGCGCGGCTTCCGCGCCCAGCTGCGCGACCAGACGTACGACTTCTGGCGCAACG
GCTTCTTCGCCCGCGCCGACGCTTGGACGGTGGAGACGCGCGTCGTCGGCCAGCGCGCCCTTTTCACCGCCGACC
CGGACAACATCAAGGCCATGCTGTCGACGCAGTTCGGCGACTTCGGCAAGGGCCAGCCCTTCCACGACGAGTGGG
AGGCCTTCCTCGGCGACGGCATCTTCGCCACCGACGGCGCCCTCTGGCAGGCCAGCCGCCAGCTGATCCGGCCCC
AGTTCACGCGCGACCGCGTCAGCGACCTCGACTGCTTCGAGTCCCACGTTCAGACACTCTTCGCCGTCATGGCCA
AGGCCGAGGCCGCGCCCGCCGGCCAGACCGCCACCCGGCACAAGCCTCCGGCCTCGGTCCCGTCCTCGAGCCGCG
GCCGCGTCGTCGAGATGACCGATCTCTTCTATCGCTTCACCCTCGACGTCACCACCGACTTTCTCCTCGGCGCCG
ACGTCAAGTCTCTCACGTCCGTCTCTTCCTTCTTCGTCCTGGTCCTTCTTTTCTTCTACCCTCCCCGTCCGTCTC
TCTCGCTCTCTCGCTGACGTCCCCCTTCTCCGTCGACAAAACGTGCAGCTCGTCCGAGCAAGGATTCGCCAACGC
CTGGGACGAGGTCCAGCTCCTGCAGTGCCTCATCAACCGCACCTTCGCCTTCGGCCGGCTGCTGCCGATGCCGCG
CTTTCACGCCTGCCTCGGCGTCGTCAACAACTTCGTCAACACATTCATCGACCGCGTGCTCGGCCTGGCGCCCGA
CGAGCTCGCGGCCAAGGACGAGGGCGGGTACACCTTCCTGCACGCGCTGGCCGGCTTCTCGCGCGACCGCAAGGT
GA

© 2022 - Robin Ohm - Utrecht University - The Netherlands

Built with Python Django and Wagtail